The Effect of Transverse Shear
on the Postbuckling and
Growth Characteristics of
Delaminations in Composites

A geometrically nonlinear formulation for the behavior of composite delaminated beams
of arbitrary stacking sequence, and with the effects of transverse shear deformation
included, is presented. The formulation is based on a first-order shear deformation
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e, kinematic model, which incorporates the bending-stretching coupling effect and also Fig. 1
. assumes an arbitrary initial imperfection. The nonlinear differential equations are solved
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" Atlanta. GA 30332-0150 also studied by applying the J-integral in order to derive a formula for the energy release Formu
! rate, which includes transverse shear. Results are presented which illustrate the shear
effect, especially with respect to the ratio of the in-plane extensional over shear modulus Kine
and with respect to the ratio of plate length over thickness. It is seen that transverse shear Vided’f
can affect largely the displacement profiles, rendering the structure more compliant, and the del
can promote growth by increasing the energy release rate, but this latter effect is The
moderate and mainly noticable only at the later stages in the postbuckling regime. .‘?'di_m“
sheur, |
to the
laxed.
LTdis Ve
Introduction disturbed if a delamination is present and coupling becomes pos- the use
Delaminations are interface cracks and can occur frequently in s, y g the-for
laminated composites when adjacent layers become debonded. Furthermorc.ﬂalthough the clas:\‘xcal 1am1qated beam _‘theur)f.
This may happen because of manufacturing imperfections or dur- based on the Kirchhoff hypo_thems (see Rmsspcr an.d 513\75}(1.
ing service from low velocity impact. Under compression, the 196‘1) has been shgwn to be quite adequate for thin laminates with The fi
delaminated layer may buckle well before the critical point of the 2 high span-to-thickness ratio, due o the low transverse shear plane,
base plate. Although delamination buckling does not imply loss of modulus relative to the inplane modulus of elasticity of polymeric clitssic
structural integrity and the structure may still be able to carry its composites, the effect of shear defor'muuon shquld be t{\ken e ative -
design load, it can lead to stiffness reductions, undesirable trans- ~account even for moderate span-to-thickness ratios. In this regard, The
verse deflections, and growth of the delamination in the postbuck- ~ Several improved theories have been formulated (e.g., Whitney and =
ling phase, or even initiation of intra-layer cracks which may be Pagano, 1970; Nelson and Lorch, 1974_1 Reissner, 1975; 'Lo e!lal..
more critical from the structural integrity viewpoint (Pelegri and 1977, Et?-)' Most of these refined theories can be categorized into where
Kardomateas, 1998). two basic groups: one with in-plane displacements approximated I and #
Postbuckling of delaminated composites has already been stud-  bY linear variations in the thickness direction and the other by plane
ied by many researchers including Kardomateas (1993) through ~ cubic polynomials. The first group requires the so-called shear
the use of elastica theory which could not account for the effects ~ correction factors as first suggested by Mindlin (1951) for homo-
of transverse shear and by Sheinman and Soffer (1991) through ~ geneous isotropic plates to account for the nonuniform distribution
equations based on the von Karman kinematic approach, again  Of transverse shear stresses and strains across the thickness. The
without the shear effect. As far as just the critical load (as opposed ~ second group, also called higher-order theories, uses higher-order The
to the postbuckling behavior), an approximate model, based on a  approximations for shear stresses and strains and does not use the
Timoshenko-type correction for transverse shear on the Euler shear correction factors but calls for a more involved analysis. The whid
column buckling critical loads, had been earlier provided by Kar-  present paper is based on the simpler Timoshenko-Mindlin kine- able
domateas and Schmueser (1988). In most of these cited investiga- matic hypothesis with shear correction factors. A higher-order
tions on post-buckling behavior of delaminated composites, the kinematic model has already been employed by Sheinman and VC
bending-extension coupling effect is not included (except for the  Adan (1987) in the postbuckling of laminated beams (without lam
Sheinman and Soffer, 1991 paper which, nevertheless, does not  delaminations), with the shear deformation effect taken into ac-
include transverse shear nor a study of the growth behavior).  count. A special finite-difference scheme was used in that study to
Another exception is the work of Yin (1988) which includes eliminate the “locking” phenomenon, which may occur in cases
bending-stretching coupling and was based on using trigonometric ~ where the shear deformation effect is insignificant.
functions to represent the displacements and strains. 1t should be In this investigation, both the bending-extension coupling and wh
noted that even if the plies are initially arranged in a symmetric  the transverse shear effects are included in the study of the post- ori
pattern (in which case there is no coupling), this symmetry is  buckling and growth behavior of delaminated composites. An V).
arbitrary initial imperfection is assumed and the resulting nonlin-
"1 Presently, Research Enginesr, Bell Helicopter Textron. ear problem is solved by a finite-difference scheme. Therefore, the . chy
2 professor of Civil l-ngzinccn‘ng. Technion-Israel Institute of Technology (on solution procedure is not based on a preassumed displacement the
leave). field. A new formula for the energy release rate, G, which includes
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Fig. 1 Definition of the geometry for the delaminated beam/plate

Formulation

Kinematics. A laminate with a delamination can be “subdi-
vided” into four regions, as shown in Fig. 1. In this configuration,
the delamination is through the entire width.

The displacement field is defined by its components, u, in the
x-direction and w, in the z-direction. In order to include transverse
shear, the Kirchhoff-Love hypothesis, which requires that normals
to the reference surface remain normal after deformation, is re-
laxed. The Mindlin (1951) model is used, which assumes that the
transverse shear strain is constant over the thickness and requircs
the use of a shear correction factor. Thus, the displacements are in
the form:

w(x, 7) = w(x).

ulx, z) = u’(x) + z(x); (la)

The function (x) is the rotation of the normal to the reference
plane, z = 0, and is no longer taken as —w _, as is the case in the
classical approach. In this paper, the subscript (,x) denotes deriv-
ative with respect to x.

The strains are, accordingly:
(16)

€.(x, 2) = €0(x) + 2k (x); ¥ = Yo(x),

where the superscript (°) denotes quantities at the reference plane,
and k,, is the change in curvature. The strains at the reference
plane and the change of curvature are:

0
[ T ll(J

X

+ %w?\(w?‘. +2w,): Ky =,

(Te)

Yo =+ wl (ld)

The function w(x) is an assumed initial imperfection. Note that in
the classical formulation y,, = 0. Therefore, this formulation,
which includes transverse shear, leaves three independent vari-
ables namely, u, w and ¢.

Constitutive Relations. The stress-strain relations for each

lamina j, is:
Ty 0 Q!‘ O3 €
o, | = Q. 0O (_22: €y |, 2)
T.\') Q| 3 A)‘ Q'H ’Y\')‘

where O, are the stif'ness constants of the lamina with fiber

orientation 8 and are defined in the Appendix (where 1 = x, 2 =
y).

For a onc-dimensional model (in the x — z plane) the strains and
change of curvature can be written in werms of the axial foree, V,,,
the bending moment, M,, and the sheuar force, Q.,, as follows:

€. =a N, +aM,, (3a)

K., Ta;yN,+ a M, .

o

(3h)
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Q.= kFY!.

where k is the shear correction factor. First, for a width b, fiber
orientation 8 and shear moduli G ; and G, (where | = x, 2 = y,
3 = gz) the resultant shear relation is in terms of

(3¢)

F= Qdd = Q]S/sty (4a)
where
Qu=0b J (G5 cos? 8 + Gy sin? 0)dz, (4b)
Qs = —b f (G, — Gy;) cos 0 sin 8dz, (4¢)
Qss=b f (G5 sin? 6 4+ Gy cos? 8)dz. (4d)

Two different onc-dimensional models are considered, («) plane
stress or plane strain and (b) cylindrical bending (see e.g., Shein-
man and Kardomateas, 1997):

(a) First, the coefficients «;, for plane stress and plane strain are
(Calcote, 1966):

G == 3 *D*“*' (5a)
' A, (Dy — Bi/AY)T
s (5b)
Q= a3 = — — .
77 Au(Dy - Bi/AR)
1 5
Oy = ] =5 (4
4D, - By/A,, )
where
(A, By, Dyy) = J ekl s 2, 2 (5d)~
and
Cox = Qn + 5(01@12 + "*éz})‘ (Se)
and & = 0 corresponds to plane strain assumption (€,, = =0)

while 8 = 1 corresponds to plane stress assumption (o, =71, =
0), and

- Q:?Q" : Qf}@l?. . QIZQZ? _7Q732Q|‘-»
‘ Q22Q:\‘Q§x : Qz:Q_n“Q%; ’
(b) For the cylindrical bending model (Sheinman, 1989), the

strains and moments can be written in terms of the resultant forces
N and changes in curvatures « as:

(56

{€"} = [al{N} - [N}, (6a)
{m} = [6]7{N} + [d){x}, (6b)
where
[a]=[A]"" [6]=[A]7'[B];

[d] = [D] - [BI[A]"'[B],. (6¢)

and this yields the following « coefficients:
a,={[l+A7'B(D—-BA~'B)"'B]A '},,, (6d)
a,=—{A"'B(D - BA"'B) '},,. (6¢)
a;=—{(D—BA™'B) 'BA7"},,, (6f)
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0‘4:{(D'BA_IB)_I}1|‘ (6g)

Here, I is the unit matrix and the subscript (,,) refers to the first
term of the matrix. In addition, the laminate A, B and D matrices
are 3 X 3 and are defined by:

~

(A, B, D) =J 0,;(1,z,2%dz i,j=1,2,3. (6h)

It is seen that the «'s are determined notonly by A ,,, B,,, D,,, but
alsobyA,,B,,D,.i,j= 1,2, 3. These expressions for the a’s
would be equal to those for the classical case if the lay-up is
symmetrical (B, = 0). For a nonsymmetrical lay-up. a significant
difference between the two can be expected depending on the
stacking sequence and orientation. The cylindrical bending model
is the most suitable for representing a one-dimensional laminated
configuration.

Equations (la, b) can be inverted to solve for N,, and M,, in
terms of the displacement variables and the following expressions
are obtained:

N.\'x = 77{_04[“.,\ + %‘VV{(\U._\. + 2ﬁ"..t)] + a.‘lb } (7(1)
M\\ = T’{al[u‘x + %M’.,r(w,.\' + 2w \)] - a]dj.)r}) (7b)

where
n = (s — aue). (8)

Nonlinear Equilibrium Equations and Linearization
Scheme. By applying now the minimum potential principle, the
nonlinear equilibrium equations together with the appropriate
boundary conditions can be derived. The laminate is assumed to be
acted upon by external axial, transverse and moment loadings,
denoted by g, g. and m, respectively. A variational formulation
(stationary value of total potential) gives the following expression
for the variation of the strain energy and the vanation in the
potential of the external forces:

61] J’ (Nx,rse_?,z + M,\’xaKr,r + er:S’y,r:)dx

~

- J [q.(x)du + q.(x)dw + m(x)d¢]dx. (9)

E

Substituting in (Lc¢), (1d) yields the following nonlinear equations:

Npxt q.=0 (10a)
(Nolw, + W )]+ Qe tq.=0 (10b)
M. . ~Q.+tm=0 (10c¢)

with the boundary conditions imposed on u or N, wor N (w , +
w., + Q. and Yy or M,,.

Uning (3¢) and (7a—c) gives the three nonlinear equilibrium
equations in terms of the displacement variables:

e - alunt+ (Wt ww, +wow, ]}
+q.=0, (lla)
e, — aqlu, + 3w (w, +w I w.. + w.)
+kF(y,+wy) —qgw.tw,)+qg.=0, (11b)
Mag[u e + (Wt wIw, o+ wav ] — e
—kF(y+w,)+m=0. (llc)
with the boundary conditions being:

u or "’7{_0‘4[“4.\» + .]?"v..\(“".r + zw,.‘\] + ald’,.l}
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Fig. 2 Force and moment quantities at the section where the delamina-
tion starts

woor m{—aglu. +rw, (w20 )]+ e Hw, + W)
+ kF(y + w?)
'1[] or 77{“1[”‘1 i+ %W.X(W) + ZV_VJ)] - ald’.\} (12)

Conditions at the Tips. The following displacement continu-
ity conditions were applied at the crack tips, where the subscript
denotes the region (Fig. 2):

First Crack Tip:

Wy = Wi = w, (13a)
Yo = Y3 = =y, (13b)

h h
Mz:“]‘i(lfal le:“lJrElI/n- (13c)

Second Crack Tip:

Wy = W3 = Wy, (14a)
U2 =3 = Y = Uy, (14b)

h h
u2=u;—i¢r,,; u~7u4+51j/l,. (14¢)

Furthermore, force and moment equilibrium were imposed at
each crack tip (Fig. 2). In terms of the moments M,, shear forces,
0., and axial forces, N, in each of the regions (delaminated part,
substrate and base plate) at these sections,

First Crack Tip:

H h
M =M, =M+ Ny 5 =N, 5;=0, (15a)
0, +0,+0,=0, (15b)
—N,+N,+N;=0. (15¢)
Second Crack Tip:
H h
M,—M,—M;+N; ~—N, =0, (16a)
2 2
_Q4+QA2+Q3:0, (16b)
—N,+ N, + N;=0. (16¢)

The resultant shear force at the section, Q, is defined as:

O=N.(w,+w,)+ Q. (17

The foregoing equations can be written in terms of the displace-
ments by using the relationships for M, N and Q,. given in (3¢),
(7Ta—c).

The equilibrium equations, the boundary conditions and the
continuity conditions were subsequently linearized. This was done
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using the linearization scheme developed by Thurston (1965) and
it was implemented by defining

Upy = Uy + 0w,y Wy = w, + 8w, gy = ¢, + 8y,

The equations can be linearized directly by applying the following:
Consider X and Y to be any two of the unknowns or their respec-
tive derivatives, then the product of these two unknowns with the

higher order terms (8°) neglected, can be written as:

XYy =X,0Y, + X, Y, — X,Y,. (18a)
Products of three unknowns are linearized following:
Wi Fas i Zatt = Kot Vo Zo F XVt T F XV T s
— 2%, ¥, 7. (18b)

Once the nonlinearities are removed, the derivatives are approxi-
mated by a central finite difference scheme, in which fictitious
poinis are used at the ends of each region to facilitate the definition
of the derivatives at the beginning and ending points. Another
benefit of adding these fictitious points is that they would allow
applying the governing differential equations at the beginning and
end points of these areas. in addition to the boundary conditions.

Upon substitution of the finite difference relations, the differen-
tial equations were converted into an algebraic sequence. Subse-
quently, Potter’s method (Tene et al., 1974; Sheinman and Simit-
ses, 1984) was used to solve the resulting system of linear
equations.

Energy Release Rate and Stress Intensity Factors Including
Transverse Shear. Several investigators have analyzed the
strain energy release rate, G, with respect to predicting edge or
internal delamination growth. To this extent, a Griffith-type frac-
ture criterion is employed and it is assumed that whether further
delamination occurs depends on the magnitude of the fracture
energy. defined as the energy required to produce a unit of new
delamination. In mixed mode Linear Elastic Fracture Mechanics
configurations, this quantity is uniquely expressed in terms of the
modes / and [/ stress intensity factors, K, and K, respectively
(e.g., Hellan, 1990).

During the initial postbuckling phase, the mode mixity changes
with applied strain, and depends on the relative delamination
thickness /7. For example, the study by Kardomateas (1993) has
shown that a higher mode / component is present with delamina-
tions further away from the surface. The mode mixity also changes
as the delamination grows and in the study by Kardomateas (1993)
it was shown that an increased mode // component occurs as the
delamination propagates under a constant applied compressive
strain.

A procedure for finding the total energy release rate and the
modes [ and I stress intensity factors for a general laminated
composite of arbitrary stacking sequence was reported in Shein-
man and Kardomateas (1997). The total energy release rate was
obtained by using the J-integral for a one-dimensional model of
plane stress, plane strain or cylindrical bending. However, the
transverse shear effect was not included in that work.

Considering Fig. 3, z,; denotes the location of the reference
surface of each of the four regions in which the delamination
subdivides the laminate. A general geometrical procedure, based
on the above constitutive relations, can be developed and be used
for the stress state before o' and after o'’ the crack tip for each
load level.

The stress resultants are given by:

(P M= (69— ™[I, z]dz,

h

(19a)

[P, M,]= (g\®

H

- ™)1, z)dz, (196)
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Fig. 3 Stress superposition scheme for implementing the J-integral

Q:/ _— (T(e.' a T(b)>dz; L) = (T(u) _ Tlm)dz.

h H

(19¢)

where the subscripts d, s refer to the (upper) delaminated part and
the (lower) substrate, respectively. From equilibrium, the follow-
ing relationships hold:

P.= =Py Q= -0 (20a)

M= ~M;+ Py(H+ 22— 23). (206)
The energy release rate can be computed from the J-integral:
du;
J= Wdz — T, ——ds |,
ax

I

(21a)

where W is the strain energy. Only one side has nonvanishing
stresses and on this side, dz = ds and
1 . |

W=30u€6;=3(0u€,+ 0 6.+ T 7)

du,

— = 0,€, T T
d\ Xx=xx

i Wi

Therefore

[—o.e.+ 0.6 + 1 (y,—2w,)]ds. (21b)

r

A plane stress state with o, = 0 is ussumed. Now we make use
of (1) and (3a—c) with N,, = P and M,, = M to get the
contribution of the delaminated part for the normal stress term:

O (o Py + aryM,)

7
xxSxx e

+ z(as, Py + a4de)]dZ
= (ayPy+ ayuM )Py + (a34Py + asuM )My,

and from the transverse shear term, by using (1d):

Tr:(y": - 2d/)d3

T.\':(’le - 2“\)(13 =

I (e \
__J‘\‘(kFLdj)dz__<k17_2d//Q"

The contribution from the substrate can be found in a similar
fashion and can be found in terms of P, and M, and Q, by using
(20a, b).
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Taking into account that s, = ¥, from (13b) and that 0, =
—Q, from (20a), we find the energy release rate including trans-
verse shear:

1 (P} MI 2P,M, siny+ h
2\R, "R, RR, R’

G = (22a)

where

1 )
= ay+ o) — (ay, + ay)(h + 2, = 2,3)
i

+ agu(h + 2, — Zr])zv (22b)

I L1 1y ’)
R~ Mutowi RTI\RTE) 9

. \/Rle_
siny =~ [ay, + ay + a3, + ayy — 2a4,(h + 7,5 — Zi3)];

2
(22d)

These formulas extend the formula derived in Sheinman and
Kardomateas (1997), which did not include transverse shear. They
are valid for an arbitrary stacking sequence with one caveat. Due
to the various couplings in sublaminates with fully populated
A-B-D matrices, growth will generally not be uniform across the
front of a finite-width specimen and then the one-dimensional
approximation would not be appropriate.

However, regarding the modes / and /] stress intensity factors,
at this point we shall employ the formulas of Hutchinson and Suo
(1992) for a crack in an orthotropic strip, pending a solution for a
fully anisotropic crack. Therefore, we use the smeared technique to
obtain equivalent orthotropic properties, 5,,, as

1
= = E: k
S‘.j—? Siilk
k

where ¢ is the total thickness, and & denotes each lamina. The
relevant stress strain in the x — z plane is, therefore,

O rx sy sz 0 €ox
T2 = Sz Sn 0 €;; N (23‘1)
Te 1y 0 0 s34l Ve J,

where the stiffness constants are now:

B Es E 5
511—1_1:21:\" 322—1_]}.‘1]}”‘ (230)
512 = VS = VuSus S = G (23¢)

Let us now denote by [ p] = [5]”' the corresponding compliance
matrix of the equivalently orthotropic laminate. Following Suo
(1990) (see also Sih et al., 1965), the energy release rate for an
orthotropic material can be written in terms of the mode / and
mode /I stress intensity factors in the form:

G = pun(A 7K} + ATKD), (24a)
where
2pia + pas 2 +—P
A= pulpa; = —— n=,—5—. (24b)
WP P 2ypPupn V 2
By defining
1 1 QUP}
s=—
RE R R’ 25a)

we can write (22a) in the equivalent form
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1 (P} M} 2P,M, sin
G = ("+ ‘4= "———z\, (25b)

“2\RTT R, RR, )

Now, following the same arguments as in Suo (1990) and
Sheinman and Kardomateas (1997), equating the two energy re-
lease rate equations (24a) and (26a) gives

s ) Y |. P M,
VP XK A AT = e | g — e
\2 \‘R/‘( '\’R2

1.e., two complex quantities have the same magnitude and conse-
quently, they can differ only by a phase angle shift, designated as
w, namely,

\jp.,n(/\'mK, + i/\_I/SK//) = e'; ( ,')i;k —ie" AL\I (26)
V2 \ YR} VyR2/
Arguments of dimensional analysis and loading lead to depen-
dence of w on A/H and p (Suo, 1990), i.e., w = w(h/H, p).
Equation (26) leads to the following explicit relations for the
stress intensity factors:

K, = /\m;[-Picosw+>Mdsin (w+y)} (27a)
VZpun \‘:R*}< VR2

K,,Z*AHE [i—i sin @ — o’} cos (w + y)} (27b)
vZpnn \RT \/Rz

where o is restricted in the range 0 < w < 7/2. Therefore the
stress intensity factors are fully determined apart from the single
dimensionless real function w(h/H, p). The determination of this
function requires a rigorous solution of the crack problem as was
performed in Suo (1990) by use of dislocation modeling. However,
in that paper it was shown that w is around 50 degrees. He showed
that for h/H = |, w does not depend on p and is 49.1 degrees.
Moreover, for p = 1, he also showed that an excellent approxi-
mation is

w=152.1—3h/H, indegrees (27¢)

For arbitrary values of 4/H and p, the integral equation solution in
Suo (1990) showed a very weak dependence on p and confirmed
that Eq. (27¢) can be used as an adequate estimate for a wide range
of pand for 0 = A/H = 1.

In our present formulation, we should mention at this point that
although the G derived in (22a) or (25b) is an exact expression, the
K, and K, calculations are based on the smeared equivalent
orthotropic properties assumption as well as the definition of (25a)
for the equivalent constant, R which now depends on the ratio
Q./ P, in addition to the geometry and material. Therefore, unlike
the G formulas which are exact, the K, and K, formulas are
approximate in the case of arbitrary stacking sequence.

It is useful to express the relative amounts of mode / and mode

II by the mode mixity, ¥, defined as:
g =tan"! (K, /K,). (28)

Notice that the limit of a very thin delamination in an isotropic
material (thin film model) would predict G and ¥ in terms of the
applied compressive strain €, and the critical strain €., as follows
(e.g., Kardomateas, 1993):

G =1En(l — v?)(e — €.,)(€ + 3€,,)

2457+ 13676  _ [4 (& 1) 1n
an ¥ = 35 F 10646 ° |al\e,

cr

Discussion of Results

A verification was done first regarding the critical load. Data
were provided by Davidson and Ferrie (1994) who performed
experiments and analysis on a laminate consisting of 20 plies of
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Ciba-Geigy C6000/R6376 graphite-epoxy in a layup [(0,/90/0,)/
d/(0,/90/0.)..]1 where d denotes the delamination. The specimen
geometry was: L, = 38.1 mm, L, = L, = 37.95 mm, W = 25
mm and #/T = . The unidirectional material properties in com-
pression for graphite/epoxy are (moduli in Gpa): E,, = 124.11,
E,, = 10.27, G, = 5.45, v\, = 0.37 and the ply thickness was
t, 0.127 mm. The critical strain for delamination buckling was
found from different approaches including experimental and using
both the Classical Beam Theory (CBT) and the present First Order
Shear Deformation Theory (FOSDT). The following table lists the
results:

Method of

Y

Determination €, difference
Experimental cesults 1123 pe —
Davidson and Ferrie (1994) 1116 pe 0.6
FOSDT 1122 pe 0.1
CBT 1143 pe 1.9

Next, a parametric study was done to examine the effect of
transverse shear. The material chosen for the derivation of numer-
ical results is boron/epoxy with material properties given as fol-
lows (in GPa): E,, = 206.8, E,, = E,, = 18.6, G, 4.48,
G, = 2.55, v;, = 0.21 and ply thickness ¢,;, = 0.0889 mm. The
material was chosen because of its naturally high ratio £,,/G ..
However, a parametric study was done by keeping the same £,
and changing G,. to achieve ratios of between 20 and 100. This
ensured that the critical load for the perfect structure remains
nearly the same. The laminates were comprised of 15 unidirec-
tional zero degree plies. A delamination was located symmetrically
with respect to the length of the beam with a L./L ratio of {. The
location of the delamination through the thickness was also
changed from between first and second layer to between 7th and
8th layer. By keeping the orientation of the plies at zero degrees,
the effect of the E |,/ , ratio could be isolated from other factors
such as bending-extension coupling, which could arise from angle
ply configurations.

Figure 4(a) shows the energy release rate components for /7
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Fig. 5 The effect of the E;,/G; ratio on the midpoint deflection for
HT = L (E\ kept constant)

7= for the cases of E,,/G,, = 20 and 100. Transverse shear effects,
which are more pronounced for £,,/G . = 100, lead to higher
energy release rate values. Another example is shown in Fig. 4(b),
which gives the effect of the £,,/G,, ratio on the mode /7 energy
release rate for 4/7 = . Again, higher values of energy release
rate occur with higher E,,/G,, ratios, this effect being more
important as the postbuckling proceeds, i.e. as the load and de-
flections increase. The effect on the midpoint deflection curve for
hIT = % is plotted in Fig. 5. In the higher E, /G, case, large
deflections are achieved at much smaller loads.

[he previous results were presented by maintaining a ratio of

/T = 10. However, the effect of transverse shear also depends on
the L/T ratio. Figure 6 shows the midpoint deflection curves for
E\ /G, = 46, hiT = % and a range of L/T ratios.

In conclusion, the present formulation, which is geometrically
nonlinear for an arbitrary stacking sequence and includes the
effects of transverse shear and bending-extension coupling as well
as that of an arbitrary initial imperfection, can be used to examine

0.9

- °
L3 .y
. + FOSDT
038 | \\ 0: Clssical theory
LT=10,15 —D
07 |
t
06 -
b
"\75 -
5 UT=15 — -
5
04
03 uT=10 —> - .
02
01
[} 1] 1 1 ]
0.2 0.16 0.12 -0.08 -0.04 [4]
Midpoint deflection (w/T)

Fig. 6 Midpoint deflection curves for L/T =

10 and 15, using CBT and
FOSDT for WT = % and Ey/G; = 46
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the buckling, postbuckling and growth conditions of delaminations
under compression.
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APPENDIX
For a beam/plate of width & with in-plane moduli £, Ex, G3,
and transversc moduli G,; and G». and with a fiber orientation
(relative to | = x) 6, the stiffness constants Q, are given in terms

i
of
0 715” ;W vaE A1)
‘ (I —vpvy)’ L (I = vvy)’
o I"‘y? il
0n=FG—) 5+ @n=Gn (A2)
as follows:

0, =0, cos* B +2(0,,+ 20;;) sin* 6 cos?
+ 0, sin® 8, (A3a)
Qs =0, sin* 6+ 2(Q,, + 205;) sin? 6 cos? 6
+ 0, cos® B, (A3h)
Q= (Q, + 02, —40Q5;) sin® 6 cos? 6
+ Q,,(sin* 6 + cos* 8), (A3c)
. — 2Qs;3) sin 0 cos® 6
+(0,, — Q,, + 20;;) sin® 8 cos 8, (A3d)
Q.= (0, — Q12 — 205:) sin® 6 cos 6
+(Q),— Q1 — 20..) sin Bcos® B, (A3e)

QM =(0n+ Q» 20— 205) sin? 6 cos? 6
+ Q..(sin* 8 + cos* ). (A3
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