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A geumetricaLLy nonlinear formulation fur the behavior of composite delaminated bewns 
of arbitrary stacking sequence, and with the effects of transverse shear deformatioll George A. Kardomateas 
included, is presemed. The formulation is based on a first-order shear deformatioll 

Professor. Fig. 1 kinenwtic model, which incorporates the bending-stretching coupling effect and aim 
assumes an arbitrary initial imperj(;(tioll. The nonlinear differential equations are solved 

School of Aerospace Engineering, by Newtoll's method using a finite-difference scheme. The growth of the delamination is
Georgia Institute of Technology, 

also studied by applying the J-imegral in order to derive aformlilafor the energy release .'ormlAtlanta, GA 30332-0150 
rate, which includes transverse shear. Results are presented which iLLustrate the shear 
effect, especially with respect to the ratio of the in-plane extensionnl over shear modulw Kine 
and with respect to the ratio ofplate length over thickness. It is seen that transverse sheilI' vided" 

can affect largely the displacement profiles, rendering the structure more compliam, alld the dd 
can promote growth by increasing the energy release rate, but this latter effect is The 

moderate and mainly noticable only at the later stages in the postbuckling regime. \ rcc 

Introduction 
Delaminations are interface cracks and can occur frequently in 

laminated composites when adjacent layers become debonded. 
This may happen because of manufacturing imperfections or dur­
ing service from low velocity impact. Under compression, the 
delaminated layer may buckle well before the critical point of the 
base plate. Although delamination buckling does not imply Jo,;s of 
structural integrity and the stmcture may still be able to carry its 
design load, it can lead to stiffness reductions, undesirable trans­
verse deflections. and growth of the delamination in the postbuck­
ling phase, or even initiation of intra-layer cracks which may be 
more critical from the stmctural integrity viewpoint (Pelegri and 
Kardomateas, 1998). 

PostbuckJing of delaminated composites has already been stud­
ied by many researchers including Kardomateas (1993) through 
the u e of elastica theory which could not account for the effects 
of transverse shear and by Sheinman and Soffer (1991) through 
equations based on the von Karman kinematic approach, again 
without the shear effect. As far as just the critical load (as opposed 
to the postbuckling behavior), an approximate model, based on a 
Timoshenko-type correction for transverse shear on the Euler 
column buck.ling critical loads, had been earlier provided by Kar­
domateas and Schmueser (1988). In most of these cited investiga­
tions on post-buckling behavior of delaminated composites, the 
bending-exten 'ion coupling eHe t is not included (except for the 
Sheinman and Soffer, 1991 paper which, nevertheless, does not 
include transverse shear nor a stud of the growth behavior). 
Another exception is the work of Yin (1988) which includes 
bending-stretching coupling and was based on using trigonometric 
functions to represent the displacements and strains. It should be 
noted that even if the plies are initially amlllged in a symmetric 
pattern (in which case there is no coupling), this symmetry is 
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disturbed if a delamination is present and coupling becomes pos­ th' u C 

sible. the tor 
Furthermore. although the classical laminated beam theory. 

based on thc Kirchhoff hypothesis (see Reissncr and Stavski, 
1961) has been shown to be quite adequate for thin laminates with The fl 
a high span-to-thickness ratio, due to the low transverse shear plane 
modulus relative to the inplane modulus of elasticity of polymeric cia ~il 

composites, the effect of shear deformation should be taken into :ttin: . 
account even for moderate span-to-thickness ratios. In this regard, K 

several improved theories have been formulated (e.g., Whirne' and 
Pagano, 1970; Nelson and Lorch. I 74; Reissner, 1975; Lo et af.. 
1977. etc.), Most of these refined theories can be eategor\"lJ'u int~ 

two basic groups: one with in-plane displacements approximated 
by linear variations in the thickness direction and the other by 
cubic polynomials. The first group requires the so-called shear 
correction factors as first suggested by Mindlin (1951) for homo­
geneous isotropic plates to account for the nonuniform distribution 
of transverse shear stresses and strains across the thickness. The 
second group, also called higher-order theories, uses higher-order 
approximations for shear stresses and strains and does not use 
shear correction factors but calls for a more invol ved analysis. The 
present paper is based on the simpler Timoshenko-Mindlin kine­
matic hypothesis with shear correction factors. A higher-order 
kinematic model has already been employed by Shein man and 
Adan (1987) in the postbuckJing of laminated beams (without 
delaminations), with the shear deformation effect taken into ac­
count. A special finite-difference scheme was used in that study to 
eliminate the "locking" phenomenon, which may occur in cases 
where the shear deformation effect is insignificant. 

In this investigation, both the bending-extension coupling and 
the transverse shear effects are included in the study of the post­
buckling and growth behavior of delaminated composites. An 
arbitrary initial imperfection is assumed and the resulting nonlin­
ear problem is sol ed by a finite-difference scheme. Therefore, the d 
solution procedure is not based on a preassumed displacement th 

field. A new formula for the energy release rate, G, which includes 
transverse shear is derived and the modes I and II stress intensity 
factors including transverse shear are calculated from an adapta­
tion of Hutchinson and Suo's (1992) formulas. 
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(3c) 

(4a) 

(Sf) 

(4d) 

(5c) 

(5e) 

(5d) . 

(6c) 

(5b) 

(Sa) 

(6a) 

(6b) 

(6d) 

(6e) 

(6f) 

Q" = kF'Y~~. 

a l = A (D 8 z •II II - II/A II ) 

[a] = [A]-I; [b]= [A] -'[8]; 

Cd] = [D] - [B][A] -I[B], 

{EO} = [a]{N} - [b]{K}, 

{M} = [b]T{N} + [d]{K}, 

Q45 = -b J(G IJ - G 23 ) cos IJ sin Odz, (4c) 
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a l = {[l + A -IB(D - BA -IB) -IB]A I}II' 

a: = -{A -IB(D - BA -IB) -I}II, 

a, = -{(D ­ BA -IB)-IBA -ILl, 

where 

where k is the shear correction factor. First, for a width b, fiber 
orientation 0 and shear moduli G I) and G ZJ (where I "" x, 2 == y, 
3 "" z) the resultant shear relation is in terms of 

Two different one-dimcnsional models are considered, (a) plane 
stress or plane strain and (b) cylindrical bending (see e.g., Shein­
man and Kardomateas. 1997): 

(a) First, the coefficients a; for plane stress and plane strain are 
(Calcote, 1966): 

where 

where 

and.5 = 0 corresponds to plane strain assumption (E" = "In = 0) 
while 8 = I corresponds to plane stress assumption·(u,.• =' or.., = 
0), and 

(b) For the cylindrical bending model (Sheinman, 1989), the 
strains and moments can be written in terms of the resultant forces 
N and changes in curvatures K as: 

and this yields the following a coefficients: 

(2) 

(l a) 

(lb) and 

(ld) 

(3a) 

(3h) 

T 

l 
T 

delamination 

'Y~, = lj; + w~. 

E",(X, z) = E~(X) + ZK,.,(X); "I" = 'Y~,(x), 

u(x, z) = uO(x) + zlj;(x); w(x, z) = WO(x). 

base plate 

Kinematic.. A laminate with a delamination can be "subdi­
vided" into four regions, as shown in Fig. 1. In this configuration, 
the delamination is through the entire width. 

Th displacement field is defined by its components, u, in the 
x-Liirection and w, in the z-direction. In order to include transverse 
shear, the Kirchhoff-Love hypothesis, which requires that normals 
to the reference surface remain normal after deformation, is re­
laxed. The indlin (l951) model is used, which assumes that the 
transverse shear strain is constant over the thickne s and requires 
the use of a shear correction factor. Thus, the displacements are in 
the form: 

Fig. 1 Definition of the geometry for the delaminated beam/plate 

Formulation 

The function lj;(x) is the rotation of the normal to the reference 
plane. ;: = 0, and i no longer tak n a. - w." as is the case in the 
claSSIcal approach. In this paper, the subscript (,x) denotes deriv­
ativ with respect to x. 

The strains are, accordingly: 

where the superscript (0) denotes quantiti s at the reference plane, 
and K xx is the change in curvature. The trains at the reference 
plane and the change of curvature are: 

The function w(x) is an assumed initial imperfection. ote that in 
the classical formulation "IX! = O. Therefore, this formulation, 
which includes transverse shear, leaves tIu'ee independent vari­
ables nameLy, U, wand lj;. 

Constitutive Relations. The stress-strain relations for each 
laminaj, is: 
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where D,) are the stif'ncs·; constants of the lamina with fiber 
orientation 0 and are defined in the Appendix (where L ~ x, 2 "" 
y). 

ror a one-di mensional model (in the x - z plane) the strains and 
change of curvature can be written in tcrms of the axial forec, N", 
the b~nding mOlllent, M... and the shear force, Q", as folluws: 



/I 

(6g) 

Here, I is the unit matrix ~nd the sUbscript (II) refers to the first 
tem1 of the matrix, In addition, the laminate A, Band D matrices 
are 3 X 3 and are defined by: 

It is seen that the a's are determined not only by A II' B", D", but 
also by A ,j' B'j' D'j' i, j = I, 2, 3, These expressions for the a's 
would be equal to those for the cia. sical case if the lay-up is 
symmetrical (B u = 0). For a nonsymmetricallay-up, a significant 
difference between the two can be expected depending on the 
stacking sequence and orientation. The cylindrical bending model 
is the most suitable for representing a one-dimensional laminated 
configuration, 

Equations (la, b) can be inverted to solve for N" and M '" in 
terms of the displacement variables and the following expressions 
are obtained: 

where 

(8) 

Nonlinear Equilibrium Equations and Linearization 
Scheme. By applying now the minimum potential principle, the 
nonlinear equilibrium equations together with the appropriate 
boundary conditions can be derived, The laminate is assumed to be 
acted upon by external axjal, transverse and moment loadings, 
denoted by q" q, and m, respectively. A variational formulation 
(stationary value of total potential) gives the following expression 
for the variation of the strain energy and the variation in the 
potential of the external forces: 

811 = f. (Nu8E~, + Mn 8Kn + kQ,,8'Y,,)dx 

-f [q,(x)8u + q,(x)8w + m(x)81jJ]dx, (9) 

x 

Substituting in (Ic), (ld) yields the following nonlinear equations: 

(lOa) 

[N,,(w, + w.xH, + Q..... + q, = 0 (lOb) 

M".,-·Qx:+m=O (lOc) 

with the boundary conditions imposed on u or N.... w or Nx,(w., + 
w,J + Q" and IjJ or M", 

T.;~;jng (3c) and (70-c) gives the three nonlinear equilibrium 
equations in terms of the displacement variables: 

y/{a21jJ .. - a 4 [u,xx + (w" + w.,)w.xx + w.,iv ..]} 
+q,=O, (lla) 

y/{a21jJ.x - a.[u" + t w.x(w., + ii.',,)]}(IV.,. f w.xx> 

+ kF(IjJ.x + w.,x> - q,(w., + w.,) + q, = 0, (lIb) 

Y/{az[u.u + (w.• + w,..)w" + W.,IV,xx] - atljJ.xx} 

-kF(IjJ+w,)+m=O, (1Ic) 

with the boundary conditions being: 

u or Y/{ -a.[u, + t w.,.(w, + 2w.J] + (X21jJ...) 

408 I Vol. 121, OCTOBER 1999 

using 
it wa 

The 
Con, 
tive 
high 

Fig. 2 Force and moment quantities at the section where the delamina­
tion starts Prod 

x", 

w or Y/{ -a.[u, + t w,(w., + 2i\I.J] + a21jJ ..,}(w" + ~J,) 

Ono 
mat 

+ kF(1jJ + w°,) 

IjJ or y/{al[u, + tw,,(wx + 2w.,)] - at~j.J (12) 

Conditions at the Tips. The following displacement continu­
ity conditions were applied at the crack tips, where the subscript 
denotes the region (Fig, 2): 

First Crack Tip: 

h 
u2=u t -2'ljJa; 

Second Crack Tip: 

h 
U2 = U4 - IljJb; 

tial 
que(l3a) 
~c 

ql(l3b) 

T 
It 

in 
lu 

( 13c) 

d(l4a) 

( 14b) de 
co 
m

( 14c) 
(e 

Furthermore, force and moment equilibrium were imposed at 
each crack tip (Fig. 2), In terms of the moments M" shear forces,
<L., and axial forces, N, in each of the regions (delaminated part, 
substrate and base plate) at these sections, 

w 

First Crack Tip: 
il 

(I Sa) 

(I Sb) 

(I Sc) 

Second Crack Tip: 

(l6a) 

(16b) 

The resultant 

-N. + N2 + N) = O. (I6c) 

hear force at the section, Q, is defi"ned as: 

( 17) 

The foregoing equations can be written in terms of the displace­
ments by using the relationship for M, Nand Q, .. given in (3c), 
(7a-c), 

he equilibrium eqw tions, the boundary conditions and the 
continuity conditions were subsequently linearized. This was done 
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using the linearization scheme developed by Thurston (1965) and 
it was implemented by d fining 

U" 1= u. + au,,; IV,,~I = 11'" + ow,,; l/J" 1= ljJ" + aljJ" 

The equations can be linearized direclly by applying the following: 
Con:id T X and Y r be any two of the unknowns or their re pec­
tive d rivativ s, th n the product of these two unknowns with the 
higher order terms (81

) neglected, can be writ! n as: 

X"~,Y,, I=X" ,Y"+X"Y""-X,,Y,,. ( l8a) 

Products of thr c unknowns are linearized following: 

X" Il'. ,Z"'I=X,,_IY,,Z.+X.Y. ,Z"+X.Y"Z,,,I 

Once the nonlinearities are removed, the derivatives are approxi­
mated by a central finite difference scheme, in which fictitious 
point, are lIsed at the ends of each region to facilitate the definition 
of the derivativ . at the beginning and emling points. Another 
benefit of adtJing th se fictitious points is thaI they would allow 
applying the governing cliff rential equations at the beginning and 
cnd poinls of these areas, in addition to the boundary conditions. 

pon substitution of the finite tJifference relations. the differen­
ti,11 equations were converted into an algebraic sequence. Su sc­
quently, Palter's method (Ten et al.. 1974: Sheinman and Simit­
.es. 1984) was used to solve the resulting system of linear 
equations. 

Energy Release Rate and Str Intensity Factors lncluding 
Transverse bear. Several inve tiguloe have analyzed lhe 
strain energy release rate. G. with respect [0 predicting edge or 
internal delaminati n growth. To this extent. a Griffith-type frac­
ture criterion is employed and it is 3S umed that whether further 
d I mination ccurs depends on the magnitude of the fraclure 
energy_ defined a, the energy required to produce a unit of n w 
d lamination. In mixed mode Unear Elastic racture Mechanics 
cunfigurations. this quantity i. uniquely expres' d in terms of the 
m des! and I! stress in nsity fact . KJ and KIl , respectively 

.g., Hellan, 1990). 
Durulg the ulitial postbuckling phase. th mode mixity changes 

with applied strain, and d pend~ on the relative delamination 
thickness hiT. For example. the study by Kardomateas (1993) has 
sh wn that a higher mode I component is present with delamina­
lions further away from th sUlfac. he mode mixity also changes 
a. lhe delamination grows and in the study by Kardomateas (1993) 
it as'h )wn that all increased mode I I component occurs as the 
delamination propagates under a constant applied compre ive 
strain. 

A procedure for finding the total energy release rate and the 
modes J antJ II stress intensity factors ror a general laminated 
c mposite of 3rbitrary stacking sequence was reported in Shein­
man and Kardomatea (1997). The total energy release rate was 

btained by using the J-integral for a one-dimen.'ional model of 
plane stre' • plane strain or cylindrical bending. However, the 
transv rs sh ar effect was not included in that work. 

Consid ring Fig. 3, Z'i den te the location of the reference 
surface of each of the four r gions in which llle delamination 
subdivides the lanlinate. A general geometrical procedure based 
on the abov constitutive relations, can be developed and be used 
fur th stres ,tate before (T'h' and after fTC.' the crack tip for each 
luad level. 

The '!r S' resultants are gi An by: 

[P J, MJJ = I ((Tlal - (Tfb))[I, z}dz, ( 19a) 
h 

[P"M.l= f rr(u)-rrfh1)[J.z]dz, (l9b) 

Ii 

r 

= 

Fig. 3 Stress superposition scheme for implementing the J·integral 

( 19c) 

whel'e the subscripts d, s refer to the (upper) delaminated part and 
the (lower) substrat , respectively. From equilibrium, the follow­
ing relationships hold: 

(20a) 

(20b) 

The energy rele e rate can be computed from the J-integrul: 

I [ OU']
J = I Wdz - Ti d.: ds , (2 la) 

where W is tbe strain energy. Only one side has non vanishing 
tresses and on this side, dz = ds and 

au, 
T, ox = (TxxEn + T" IV.x 

Therefore 

J = ±{ [-(T""-,, + (T"E" + T"(y,, - 2wx )]ds_ (2lh) 

A plane stress state with rr" = 0 is assumed. Now we make use 
of (lb) and (3a-c) with N" = P and M", = M to get the 
contribution of the delaminated part for the normal stress term: 

I uxxEx.,dz = I (T..ccC(Cl'IJPd + Cl'l,Jv1d) 

+ Z(Cl'3J Pd + Cl' 4J M d)]dz 

= (Cl'IJP J + Cl'UMd)P J + (Cl' 3J PJ + Cl'4dM J)Md, 

and from the transverse shear term, by using (ld): 

The contribution from the substTate can be found in a similar 
fashion and can be found in t rms of P,j and MJ and QJ by Llsing 
(20a, b). 
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Taking into account that t/Jd = t/J, from (13b) and that Qd = 
- Q, from (20a), we find the energy release rate including trans­
verse shear: 

(22a) 

where 

R;
I

= aid + ai, - (a3s + au)(h + Zr2 - Zr3) 

+ a4Ah + Zr2 - Zr3r, (22b) 

(22c) 

. ~RIR2 
Sin Y = --2- [a2s + au + a3, + a3d - 2a4s(h + Zr2 - Zr3)], 

(22d) 

These formulas extend the formula derived in Sheinman and 
Kardomateas (1997), which did not include transverse shear. They 
are valid for an arbitrary stacking sequence with one caveat. Due 
to the various couplings in sublaminates with fully populated 
A-B-D matrices, growth will generally not be uniform across the 
front of a finite-width specimen and then the one-dimensional 
approximation would not be appropriate. 

However, regarding the modes I and 1/ stress intensity factors, 
at this point we shall employ the formulas of Hutchinson and Suo 
(1992) for a crack in an orthotropic strip, pending a solution for a 
fully anisotropic crack. Therefore, we use the smeared technique to 
obtain equivalent orthotropic properties, s')' as 

where t is the total thickness, and k denotes each lamina. The 
relevant stress strain in the x - Z plane is, therefore, 

(23a) 

where the stiffness constants are now: 

(23b) 

(23c) 

Let us now denote by [p] = [sr' the corresponding compliance 
matrix of the equivalently orthotropic laminate. Following Suo 
(1990) (see also Sih et a!., 1965), the energy release rate for an 
orthotropic material can be written in terms of the mode I and 
mode 1/ stress intensity factors in the form: 

(24a) 

where 

2PI2 + P33 1 + P 
P = . n = (24b)

22 ~PIIP22 '
 

By defining
 

I I Q~/P~ 
(25a)Ri=R;+~' 

we can write (22a) in the equivalent form 
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G= ~ (P~ + M~ + 2Pd Md sin Y) (25b)
2 Rr R -JR ,R '2 2 

Now, following the same arguments as in Suo (1990) and 
Sheinman and Kardomateas (1997), equating the two energy re­
lease rate equations (24a) and (26a) gives 

I Pn IA - 3/B K + iA -I/BK 1 = -rI _d_ - ie;-YP II I II >/2 R~ 

i.e., two complex quantities have the same magnitude and conse­
quently, they can differ only by a phase angle shift, designated as 
w, namely, 

e iw ( Pd . M")n(A - 3/8 K + iA - 1I8 K ) = - -- - ie'-Y -- . (26)~P 
" I II 2 Ri R2 

Arguments of dimensional analysis and loading lead to depen­
dence of won hlH and p (Suo, 1990), i.e., w = w(hIH, p). 

Equation (26) leads to the following explicit relations for the 
stress intensity factors: 

A3/8 [P M ]
KI=~ ~cosw+ d sin(w+y) , (27a) 

y2Plln vR i R2 

KII=~[ P\sinw- ~COS(w+y)]. (27b) 
,J2Plln R I VR2 

where w is restricted in the range 0 < w < 7[12. Therefore the 
stress intensity factors are fully determined apart from the single 
dimensionless real function w(hlH, p). The determination of this 
function requires a rigorous solution of the crack problem as was 
performed in Suo (1990) by use of dislocation modeling. However, 
in that paper it was shown that w is around 50 degrees. He showed 
that for hIH = I, w does not depend on p and is 49.1 degrees. 
Moreover, for p = I, he also showed that an excellent approxi­
mation is 

w = 52.1 - 3h1H, in degrees (27c) 

For arbitrary values of hIHand p, the integral equation solution in 
Suo (1990) showed a very weak dependence on p and confirmed 
that Eq. (27c) can be used as an adequate estimate for a wide range 
of p and for 0 :s hlH:s I. 

In our present formulation, we should mention at this point that 
although the G derived in (22a) or (25b) is an exact expression, the 
K, and Kif calculations are based on the smeared equivalent 
orthotropic properties assumption as well as the definition of (25a) 
for the equivalent constant, Rj which now depends on the ratio 
QJP d in addition to the geometry and material. Therefore, unlike 
the G formulas which are exact, the K, and Kif formulas are 
approximate in the case of arbitrary stacking sequence. 

It is useful to express the relative amounts of mode I and mode 
II by the mode mixity, lj;, defined as: 

(28) 

Notice that the limit of a very thin delamination in an isotropic 
material (thin film model) would predict G and ib in terms of the 
applied compressive strain Eo and the critical strain E er as follows 
(e.g., Kardomateas, 1993): 

G = tEh(1 - V
2
)(Eo - Eer)(Eo + 3Eer ) 

_ 2.457 + 1.367(; _[4 (En(;- - - ­
tan t/J = -3.156 + 1.064(;; 3 Eer 

Discussion of Results 

) ] 112I 

A verification was done first regarding the critical load. Data 
were provided by Davidson and Ferrie (1994) who performed 
experiments and analysis on a laminate consisting of 20 plies of 
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Fig. 5 The effect of the Ell /G 12 rolla on lhe midpoint deflection for 
hiT = {, (E" kepI constant) 
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~ for the cases of E"IG I = 20 and 100. Transver e hear effects, 
whieh are more prunounced for EIII ,,= 100, lead to higher 
energy r lense rate values. nother', ample i hown ill Fio. 4(b). 
which gi es the effect of the EIi/G Il ralio on the m de II energy 
release rate for hiT = f<. Again, high rvalue of energy release 
rate occur ith Ili'h I' EIIIG 'l ralios. this efre t bing more 
important as the po tbuckling proceeds, i.. as the load and de­
flections increase, he effect on the midpoint deflecti n curve for 
hiT = is i.s plotted in ig. 5. In the hioher E"I 11 case, large 
denectjons are achieved at much smaller loads. 

Th previous results were pre 'en ted by maintainino- a ralio of 
LIT = 10. However, the effect of trans erse shear al 0 depends on 
the LIT ratio. Figure 6 ~hows the midpoint defle tion curves for 
E I /G Il = 46, hiT = I and a rdng fLIT rarios. 

In conclusion, the present formulation, whlch is geometrically 
nonlinear for an arbitrary Slacking sequcncc and includes the 
effects of tran'verse shcar and bending-extension oupling as well 
as thaI of all arbilrary initial imperfection, can be usecllo examine 

Flg.6 Midpoint de11ectlon curves for LIT = 10 end 15, using csr end 
FOSDT for hiT = is and EII /G t2 = 46 
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Fig.4(b) The effect olthe E"IG'2 ratio on the Mode II energy release rate 
for hiT = ,r. 

iba-Gei~y 60001R6376 graphite-epoxy in a layup 1(0 2/9010 2 )1 
dl(0,l9010,h] where d denoles the delamination. The specimen 
geomelIy was: L 2 = 38.1 mm, L, = L. = 37.95 mm, W = 25 
mm and hiT = t. The unidirectional mat rial properti . in com­
pression for graphite/epoxy ar (moduli in Gpa): £1' = 124.11, 
E2• = 10.27, Gil = 5.45, V l2 = 0.37 and Ih ply thickness was 
ir" = 0.127 mm. The critical strain for delamination buckling was 
found from different arrroache' including e. peri mental and using 
both the I ssical Beam Theory (CBT) and the present First Order 
Shear Deformation Theory (FOSDT). The following table lists the 
results: 

Fig. 4(a) The effect of the E"IG'2 ratio on the energy release rate for 
hiT =1, 

ext. a parametric study was clone to examine the effect of 
transverse shcar. The material chosen for the derivati n of numer­
ical results is boronlepoxy with matel;al properties given as fol­
lows (in GPa): E" = 206.8, E12 = EJ) = 18.6, Gil = 4.48, 
G ll = 2.55, Vl2 = 0.21 and ply thickne f,,;> = 0.OR89 mm. The 
material was chosen because of its natur:lll high rdlio EII/G 12. 

However, a parametric sLUdy was done by keeping the same E" 
and changing Gil to achieve ratios of betw en 20 and 100. This 
ensured that the critical load ~ r the perfect structure remalns 
n arly the same. The laminat s w re compri ed of 15 unidir c­
tional zero degree plie. delamlnation was located s mmeu'ically 
with respect to the length of th beam with ij 21L ratio of *.The 
location of the delamination thruugh the thicknes was also 
changed from bel ween fir·t and second layer to between 7th and 
8th 1 yer. By keeping the ori ntation of the plie at zero degrees. 
the effect of tlle Ij/G I. ratio could be is lated from lJlher faclOrs 
such as b nding-exrension coupling. which could arise from angle 
ply configurations. 

Figure 4(£.1) shows the energy release nile c'omponents for hiT = 
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the buckling, postbuckling and growth conditions of delaminations 
under compression. 
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APPENDIX 
For a beam/plate of width b with in-plane moduli E", En, G 12 , 

and transver:,-: moduli G 13 and G l' and with a fiber orientation 
(relative to I == x) e, the stiffness constants 12 i) are given in terms 
of 

(A 1) 

(A2) 

as follows: 

121 = Ql1 cos" e+ 2(Q12 + 2Q33) sin 2 e cos 2 e 
+ Q22 sin" e, (A3a) 

122" = QII sin" G+ 2(Q12 + 2QJ1) sin 2 e cos 2 e 
+ Q22 cos" e, (A3b) 

12ll = (Qtl + Q22 - 4Q33) sin 2 e cos2 e 
+ Qt2(sin 4 e+ cos" e), (A3c) 

1213 = (Qtl - Q12 - 2Q.'J sin e cos 3 e 
+ (Qlt - QI2 + 2Q33) sin 3 e cos e, (A3d) 

Qt2 - 2Q33) sin 3 e cos e 
+ (Qll - QI2 - 2Q ,) sin e cos] e, (A3e) 

2Qt2 - 2QJ3) sin 2 Gcos 2 e 
+ Q,,(sin" e+ cos" e). (A3j) 

Pm 
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