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Introduction 

Si gle- dge and Double-Edge 
Cracks in a Fully Anisotropic 
Strip 
The mode I and II stress intensity factors in a fully anisotropic infinite strip with a 
single-edge or double-edge crack configuration are ohtained from WI approach based on 
the cOlUinuous dislocation technique. The elastic solution of a single dislocation in an 
anisotropic half plane is used in conjunction with {/I! array of dislocations along the 
boundary ofthe infinile Slrip, which is supposed 10 be tra ·tion~free, to provide the solUlion 
(}r a single dislocalion ill an onisolropic infinite strip. The disloClilion densities of the 
dislocalion array are delermined in such a lVay that the traction forces generated by the 
dislocalion array cancel Ihe residual lraclions along lhe boundary due to the single 
dislocation in the half plane. The stress field ofa single dislocalion in lhe infinite Slrip is 
thus a superposition of that of Ihe single dislocaliol1 and Ihe dislocation array in the haif 
plane. This solution is then applied to calculate the mixed mode I and If stress intensily 
factorsfor a single-edge and a double-edge rack in the anisotropic strip, by replacing the 
cracks wilh a series of dislocations and salisfying the crack slllface traclion-free con(li
lions. To illustrate Ihe resulls, typical material data for graphire/epoxy were used in a 
unidirectional consrruclion with thejiber orientnlion, e, measuredfrom the load direction 
(perpendintlar to the cruck direclion), vG/ying between 0 and 90 degrees. It is found thor 
the e./fect ofanisotropy on the mode J stress intensity factor is sign([icont between 30 and 
60 degrees and depends slrongly on the relative crack length. being larger for cracks of 
relative larger length. The mode mixiry. defined sllch that it is zero for pure mode I and 
90 degrees for pure mode II, is sigl1ijicanl belween 40 and 70 degrees, and is in general fit 
between zero and 20 degrees. sl. 

The extensive use of composite~ in the last decades for high 
performance, low weight structur motivate' the need for mod
eling and predicting their structural behavior and failure modes. 
Especially, interlayer cracking (delamination) is a common failure 
mode of laminated composites. In most cases, th cracks are 
subjected to mixed-mode loading and the mode I and mode II 
we. s intensity factors at the cr ck tip are needed in order to 
predict the propagation behavior. In addition to interlayer cracks, 
intra-layer cracking has been observed to take place in cenain 
stacking sequences (Pclegri and Kardomateas, 1998). 

Mixed-mode stre s intensity factors can be calcuIJted by various 
methods. A detailed review of stress intensity factor calculation 
can be found in artwright and Rooke (1975). One of the most 
effective methods is the distributed dislocation technique. which is 
a semi-analytical technique. The basic idea of the distributed 
dislocation technique is to model the racks by continuous dislo
cations along the crack lines in otherwise perfect bodies. Hills et 
a!. (1996) have a detailed de cription of applying tlle di'trihuted 
dislocation technique to solve the isotropic crack problem. Based 
on an implementation of Bueckner's (1958) theorem, the crack 
problem is usually solved in three steps: first the traction force' 
along the crack are found in the absence of the cracks. Second, the 
stre ses due to di locations along the crack lines are found in the 
same ge metry. Finally, the distribution of dislocations is deter
mined in . uch a way that the tra' ion-free conditions along the 
crack surface are satisfied. In order to achieve thi', an int gral 
equation is established which typically must be solved by a nu
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mcrical method. The crack tip stress intensity factors can be 
normally calculated from the dislocation densities. 

It hould b •tat d that the continuous dislocation approach has 
been mo tly applied in determining stre s intensity facto. for 
r~lati ely simpl . configurations. This is because the number of 
fundament I solutions availabl for the various kind of disloca

ar 
s 
d 
ti
d 
o 

ti ns i~ limited to simple geometries such as infinite :pace, half 
plane, near a circular inclusion. etc. In addition, the stre s distri
bution of the structure without cracks should be e' y to calculate. 
This is why many publications based on this method deal with 
infinite plates or strips ubject to uniform far fieltlloading (Gupta 
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and rdogan. 1974; Civelek and Erdogun, 1980; Civelek, 1985). 
V~ry fe\ pap rs have dealt with n ni otropic crack' in tinite or 

emi-infinite bodies. An edge crack in a strip with edge loading 
was studied by Thoule set a!. (1987) and by Suo (1990 , whereas 
as f r ~ olutions in orthotropic materials. the distributed dislo
cation method was employed by Suo (1990) and Suo and Hutchin
son (1990) to obtain the stress int nsity factors for an orthotropic 
strip. The method employed for the field in th unflawed strip was 
an Air tress function solution with ourier transfonns. Suo 
(1990) also discussed the possible exten ion to an anisotr pic trip. 
III earlier studies, Georgiadis and Papadopoulos (1987, 1988) 
investig, ted an rthotropic infinite strip ith a emi-infinite crack 
mid-di tance of the strip faces by u. in,; Fourier transf nns in 
combination with the Wiener-HopI' technique. In 3. more recent 
study, ian and Sun (1997) obtained stre s intensity factors for 
interfa e cracks betwe n two monoclinic media. by ither calcu
lating the tinite-extension strain energy release rate' or utilizing 
the relation\hips betwe n the crack surfac di placements and the 
stress intensity factors. both carricd out with a finit element 
analysis. 

A solution to the problem of a fully anisotropic strip with a 
singl -edge or double-edge cracks i. pre. ented in this paper. A 
different approach than the ouri r tJ'ansforlll method of Suo 
(1990) is followed in this paper. First. th~ elastic solution of a 
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and, 

U~;'I = 7Td[ ~ f, b,Ci, h)GA/;Cx, h, I, h) 

+ b,Ci, h)G,,/(x. h, I, h)Jdi = -Ul;l(x, 11), 

ij = xx, xy (5) 

We can actually nforce that b(t, 11) = bAi, 11) + ih,(t, II) be 
zero at I = -I and I = I (t = -d and 1 = d) assuming that d 
is large enough. This can be buill into the solution by e pressing 
brio 11) a the product of a fundamental function wei) anu an 
unknown fUllction b(l, 11) (Hills et aI., 1996): 

U~,;I(X, h) = fd [b,(r, h) H' (x, h. I, h) 
-d 

so that thesc equations can be written in the form: 

_ 1 x 
t = d and .f = d 

Now. normalize Eq, (4) as following: 

+ b,(I, h)G",(x, 11, I, h)Jdl = -u;~;\x, h), (4b) 

u~~(x, 11) = 8,(xo, yo)G,.,y(x, 11, ..10. Yo) 

+ 8,(..10 , yo)G,.,r, (x, h, xo. Yo)' (2b) 

U~':I(X, h) = r~x [b,(t, I1)Gn , (x, h, t, h) 

+ b,,(t. I1)G,n (..1,11, I, I1)Jdt = -a~;.I(x, h), (3a) 

The second geometry is a half plane with an array of disloca
tions along the dashed line. The dislocation den itie of the dislo
cations hex, Ii) along the boundary are determined in such a way 
that the tractions generated by these dislocations along the dashed 
line u:;'(x, 11) and U;;'(X. 11) are the opposite of u~;'(.\, h) and 
u:~J(x. h). Thus the traction-free boundary conditions of the 
infinite strip are satjsfied after superposing these two geometries 
together. Suppose that the dislocation array bet, h) = b,(I, 11) + 
ib,,(t. 11) are distributed from -00 to 00, then the traction, along the 
dashed line are: 

U;;.I( ,11) = f! [h,(I, h)G",(x, 11, I, h) 

-d 

+ b,Ct, h)G,,, (x, h, I, h)]dl = -u~~'(x, 11), (4a) 

u~~)(x, 11) = rxx [bcCI, 11) 'm(x, 17, I, 11) 

+ b,.(t, I1)G", (x, 11, I, h)Jdl = -u~ ...'(x, 11), (3b) 

where u)j' are defined in Eq, (2). 
The functions G",(x. h. t, 11), ,,,(x, II, t, 11), G....Jx. 11, t, h) 

and G",(x, 11, I, h) are singular at x = t, Since the single 
dislocation is in self-equilibrium, the tractions U;~'( x, 11) and 
u;"'(x, 11) vanish as r ~ -ce, +00. A. are dL, the uislocation 
densities b,.(I, h) and b,.(t. h) go to zero as t ~ -:c, CIJ. 

Therefore, for calculation purposes, in the singular integml equa
tions (3) we can ignore the dislocations located at x > d and x < 
- d, where d is a value large enough compared to h. A value of 
d = 10011 was found to be more than adequate for this purpose. 
Thus, Eqs. (3) become: 

.L B=Bx+IBy 

) r
..L. B=Bx+iBy h 

(xO,yO) 

~ 
II 

ayy 
... D1<y 

---------~----------------------- -r
h 

'---- ---/ L 

+ 

dislo 3lion in an ani olropic infinite strip is derived by assigning 
an an'ay of dislocations along a line in the half plane which is 
suppos d to be the boundary of the infinite strip. The dislocation 
uensitie~ of thesc added dislocation~ are determined by satisfying 
the traction-free boundary conditions. Th stress fields of a ingle 
ui 'location in the anisotropic strip is thus the combination of that 
of thc single dislocation and those of the dislocations distrihuted 
along the bounuary. Sub.'equently. the elastic solution is employed 
to calculate the mixed-mode str ss intensity factors of single- and 
doubl -edge cracks in th nisotropic infinite strip. The material 
anisutropy and the cr ck length effects on the Mode I and II stress 
intensity factors are inve ligated, 

Formulation 

Fig. 1 Single dislocation In an Infinite strip as a superposition of a 
single dislocation in a half plane and an array 01 dislocations at the 
boundary 01 the strip 

A Dislocation in a Fully Anisotropic Strip. As shown in Fig. 
I. the geometry of a dislocation in an infinite ·trip can be decom
posed into two geometries. The first one is a half plane with a 
sinn Ie di, location located at point Cx o, Yo), for which lhe elastic 
~olution of the dislocation can be found in Lee C1990) and is 
summarized in ppcndix A. [0 shorr, the stres~ components at 
point Cx, y) due to a dislocation 8 = B, i8, located at (x o, Yo) 
can be expressed as: 

Journal of Engineering Materials and Technology' 

uij(x, y) = 8, (xo. yo)G"J(x, y, xo, Yo) 

+ 8.(xo, yo)G,.,/x, y. xo. Yo), (I) 

where ij = xx. yy, xy and G'(lCx. y, X(I, Yo) are the stress 
components at (x, y) due to a unit dislocation 8., = I at (.10' Yo) 
and G,lix, y, xu. Yl» are the stres components at (x, y) due to a 
unit d~slocation B, = I at (..10. Yo), 

Accordingly, the tra ti ns along the uashed lin , which is sup
posed to be the boundary of the infinite strip. dLle to th single 
dislocation B(xo, Yo) in the half plane are: 

U~~I(..1, 11) = 8,(x", YII)G,r,(x, h, x~' Yo) 

+ 8,(xo, yo)G,.,y(x, h, xo, Yo). (2a) 



I 

h(t) = W(f)E(i. 11); wei) = I - f-. (6) 
r~(dl 
VI, 

ub~lituling Eq. ( ) into Eq. (5). the numerical ~ rm of the 
.ingular imegral equali ns can • expres~ed ~: (J.XOly)4----'-.l~_IY)_j_Y--....L..L-..,~1 

N 

7Td[L W,h, (Ii' I1)G",(x•. It. /. It) II 
, I 

ij = xx. XI k = I, ... , N + 1 (7) 

where I, are the N discrete integral P0lnt~ an .i\ are the collocation 
puinL, unJ W. arc Ihe weight coefficients: 

7T(2k  1)] 
'\'1 - cos [ 'l(N + l) 

(8) 

Equation (7) ullows us to detennine the disl alion Jen'itie. 
17(i,. h) ( f th' dislocation arrJy along the dash line. which 
cunt:cl t ut thc reo idual traction~ due to a ingle dislocation 8(xo. 
YIl) in the first geom try. After the dislocation densitic. b(l, . h) are 
known. the ~tre~~ component. at every point (.1, .') tn th second 
geometry can be calcuJatcJ a~ following. 

N 

a:;oICt, v) = mil W,b.(fi' MGIli(x y Ii' h) 
i= J 

N 

+ L lV,h) f,. It G)Jr, y. I • It), (9) 
• I 

where ij = xx. yy and X). 

Ob\'i(lu~ly. lhe disloclIti n densitie~ b(t t. It along the Jash d 
line arc relateJ to the ingle di locallon B(x", ,1',,) in the half plane. 
Denoting ule dislocation den~ities b(t., 11) as bOI(I.. Ii) = b~·'(I.. 
iI) + ib:"(I,. It) for J single di~localion B(x"• .r,,) = I ami as 
17' t.. IT) = 17: '(f.. h) + ;1I:"(f•• Ii) for ,I dislocati n B(x,,, 
I'll) = i. and superposinl! these two elasth: fields, we hav 

N 

G"l(X, .1') = Goil(.l. I) 7Td[L WJj~"(I,. h)G'ij(X. y. fi, 11) 
i= I 

N 

+ L W /;:'1(/;. IT G'il(X, .1. fi' Ii)), (Oa) 
, I 

and 

v 

G fj(X' ) = G ,j(X' y) + 7Td[L I ,6 1 Vi. h)G"j(X' Y. 1/, II) 

+ L w,6:"(i.. IT)G"I!x, y. f" 11)j. (lOb) 
, I 

where ij = xx. 1'1' and xy. 

Phy~ically G"k', y) in Eq. (I Ou) repre~entth sire! ses at (x, y) 
due to a di~1 allon 8 = J at (XD' \'D) in Ule infinite. trip; 

imilarly. Gut!x, r) in E . (lOb represent the stresses at x, y) 
Jue to, dlslo 'aLion B = I 01 Xu• ."Il) in Ule infinite. trip. Because 
01 the linearity of the elastic fields of the Ji location, the stres 
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\ ';( B-Bx+IBy )('---__~ --------JJ 
Fig. 2 Single-edge crack represented by an array of dislocations. 8 = 
8. + 18y, determined so that tha traction-free conditione at the crack site 
are satisfied ir 

omponents at (x. y) due to a dislocation B(xo. Yo) """ 
Yo) + i8.l 1'0. Yo) in the infinite trip are: 

(Tij(X, y) = 8 (.l"o • ."o)G,,/x, y• .\0. Yo) 

+ 8"('\0. )'u)G,,/x. y, xo, Yo). (J I) 

ext. this elastic oluti n of the dislocation in an anisotropic 
infinite ~LTip is used in th 'ingle-edge crack and the double-edge 
crack configuration. 

ingle dge rack nder Uniform Tension. An infinite 
strip with an edge crack: bj cted to uniform t n iOIl is considered 
next. As sho n in Fig. 2. the edge rack. of lemrth a. is located in 
the lowe half f the infinite strip and is aligned ith the Y axis. 
Thus. the crack lip is at v = a. Replacing the crack with aeries 
of dislocation. we find that th singular integral equations that 
en~ure cruck . urface traction-free condition for the edg crack are: 

(T~';I(O. y) = f" r8x (O, r)G,II(O. y. 0. r) 
o T 

+ B,(O. f G••AD. y. 0, I)]dl = -(To. (12a) 

and 

(T~~'(O. v) = f" [B,(O. f G,X\(D. y. 0, I) 

u 

+ 8,(0. I)C.".(O, y, O. t)]dl = O. (12b) 

The foregoing equations ensure iliat the traction (T~) and (T~~l 
cane lout the traction' along the crack face due to th external 
lading. whi h is Ull in our cuse. It sh uld be menlion d that the 
c:dge cracb. is a ~lIrface-breaking crJck and the ·tre c mponents 
are not singular at both ends of the crack. The G ussian quadra
ture. which would employed to solve the singular integral 
equations, hal' to be ch , n carefully ~ Ulat it include' all the 
appropriate ncl-point asymptoti '.. First. the int gral equations are 
nonnalized through the following ubstituti ns: 

2/- u 2.. - (/ 
f =-- .y= . 

a (( 

so thai Eq -. (12) can be written in lilt: foil JWing form: 
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2i - I 7T) ( 2i - I )[If I

(r~j'(O." = 7Tll;: 18,(0, I G",(O, y, 0, I)ell 8 f = cot ( 2N + 1"2 sin 2NI N7T . 

The ,'tre intensity factor at the crack tip y = a, is defined as: 

ij = xx. x\, (13) 

Now, B (i) and Bii) must be ~Jngular at th crack tips I = 1 
(t :- u) Hnd bonnded alt = -I (I = 0). ote hal it ha. bccn 
proven by troh (19S~) that the rack tip stresses have a singularity 
o!" Ihe r .,~ type in anisotropic material~, just as in the isotropic 
casco Thus, lhe disloc lion density Btl) should e expressed in the 
follll\ ing pmduct of a [undarnt:ntal function W(/) anJ an unko n 
rcgul,u' functioll B(/): 

1+1 
8(t) = W(t)B(t); W(t) = (14)

I -I 

Sllb~lillllil1g Eq. (14) into Eq. (13). the I1Llrnerical rOml '.1f the 
singular integral equations can be expre ed as: 

A' 

1Tul2: W,B, (0, t,)Gx.\".\"(O, Y4, 0, /,) 
i 1 

N 

+ 2: W,B,(O, II )G,,, (0, Yk' 0, I;)} = -eTIl 

1 I 

k=J ... N (15a) 

where Ii are the N discrete integration points and y, are the
 
'ollocation points and Wi are weight coefficients:
 

_ (2i - I ) 
I , = cos 7f 2~ ; 

2(1 + til 
Wi = 2N+ I . 

AI'o, y, - (aYk + (/)/2 and I, = (lll, + a)l2. Similarly: 

v 

1Ta{ 2: w/iix(O, IdGw (0, Yb 0, I;) 
I 

N 

, 1 

k=l ... N (lSb) 

As there arc 2N collocation poin and 2N integral points. Eqs. 
(15) arc sufficient for the detcmlination of the dislocation density 
8(0, I,l = B.(O, I,) + iB,(O.l; along the edge crack Of major 
Significance is the value of the dbl catiun demit' at the crack tip, 
B( + I), a' it i~ direcil related to [heiress inten~ity factor'. It can 
be obtained from Krenx's interpolation formulae (Hill' et aJ., 
1996): 

(lo) 
, 1 

where 

?
 
M - ---- and


F.-2N+ I' 
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K, + iK" = lim {'_",(a - y)[O",,(y) + i'Tn(y)J.-D}' (17a) 

sing relations for the stresses in terms of the complex potentials 
as in ( 3). gives 

K( + iK" = lim {\i27T(u - y) 2: (J.L] - iJ.L)¢j(z) 
V--~I J= I ,2 

+ (iJ-] - iiJ-;lZi>;(7)}. (17b) 

Only the ,'ingular part of the stress potential contributes. which 
is du to a disloention nt the crack tip. i.e., as y -0> a and Z -> Zn. 
lherefore the first teml be omes ('ce also Appendix): 

A1,b(y)dy + A I2h(y)dv 
( 17c) 

}kId' 

Therefore, the firslterm in (17b) give' 

and with the substitution I (2y - a)la and b( y) = 
B(I) (l - ()/( I + r), it gives 

l + I 
lim \}7Ta(l -IHJ.LI - i)[AI,S i) + AI2B(i)J 

j - {':"1 

( 17e) 

A similar contribution exists from tJle }k; term. 
nd the stres intensity factors at the crack tip y = a are related 

to the dislocation densities at the crack tip as follows: 

K, + iK" = \!2",a{[(fLl - i)A 11 + (J.L2 - i)A 21 (iJ-, - i)A 12 

+ (jj..; - i)A 22 JB(+1 +[(fLl - i)AIl + (J.L; - i)A;l 

+(iJ-,-i)A11+(jj.. -i);ll,1B(+1)}, (18) 

where A II. A Il. A 21. Au are~d in App ndix A and B( + 1) is 
given in (16). Notice that B( + I) is the complex conjucrate of 
B(+ 1). 

Double Edge Cracks nder Uniform Ten ion, nother ge
ometry we ,'tudied is a rectangular plate with double ed,?e racks 
subjected to uniform xternal load. Two edge cracks are of length 
a and located symmetrically about the middle plane of the infinite 
strip. Both cracks are a)jcroed with the y axi,'. The lower edge crack 
is denoted as crack rand th upp r edge crack as crack 11. 

The craek ~urface [facti n-free conditions in Eq. (J 2) i for a 
.inglc <:dge crack and can be easily ex.tended to the case of double 
ed e racks. Choosing coordinate systems for dge crack rand n 
as yO) and ,(i) (i = I, 2 I the exprc 'ion for the crack surface 
tractions ield the following ~ystel11s of singular integral equa
tions: . 

O"'oI'("lml) = f" 8 (0 1 '11)0 ··(0 ),Iml a t"'dr 'll I) • T ~ 'IJ' • • ,. 

o 

+ f" 8,(0, /(II)G",(O, yl"", 0, IUl)e/rlll
 

o
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y lm1+ b (0 /12»G- ··(0 0 /(2)d/ 12 ) 
t	 l \"j' " 

ii-a 

ij = xx, xy and m = 1,2, (19) 

Again, the integral equations are normalized through the fol
lowing substitutions: 

2y(l) _ 2/(1)
y(ll= I, /(1)=---1, 

a a 

and 

_ 2 21 (2) ( 2h )yl2l = _ (2h _I) __ - I2)"2) /11= - 
a 0 a a 

so that Eqs. (19) can be written in the form: 

= xx, xy and In = I, 2. (20) 

8.(illl ) and 8/ft") must be sinaular at the crack tip 1(1) = I 
(/lll = a) and bounded at the edge /(1) = - I (/11

) = 0). The form 
of Bx(?21) and B (1'21) are the opposite of that of B/i"» and 
B,(I'I'), i.e., B,(fdl) and B,(?2» are bounded at /<2) = 1(112) = h) 
and singular at I'll = - I -(1'2 / = h - a). Expressing B(/I'l) and 
B«(tl1) as 

(210) 

(I - 1(2)
W I21 (t(2l) = (21 b)\ I + 1(2) 

and substituting Eq. (21) into Eq. (20), the numerical form of the 
singular integral equations can be expressed as: 

N 

17Ta	 2: {2: wlj)B,(I~J)G'ij(yl ..1, /:/ ) 

j= I I"'=J 

N 

;=1 

k = I ... N, m = I, 2 and ij = xx, xy (22) 

where tlll are the 2N discrete integration points; Yi.'''' are the 2N 
collocation points and W/ I are weight coefficients: 

_~I!_ [7T(2i-I)]. 7T2k ]-(I) 

/. - cos 2N + I ' Yl = cos [ 2N + 1 

2( I + 1(1) 
W(I)= 1 

1 2N+ 

and 

2k -(2 _ [_2i].	 I]
/ I - cos 7T 2N + I ' 'w)

I
= [ 7T ---

'
cos 

2N + 1 
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2( I - /<2)
(2) _ 1 

Wi - 2N + I . 

Also, y\'l = (ay;') + a)/2, /~') = (all l 

(012)y:" + (h - (012», ti'l = (a/2)ll2
) 

Now we have 4N linear equations to 

) + a)/2 and Y1') = 
+ (h - (aI2». 

solve for the 4N un
knowns, i.e., 8 (1 )(I!') = B,(d'» + iBy(ln and 8(2)(1)2» = 
B«t~21) + iB,(i~I» can be solved at the discrete set of points I~II 
and 1:1) from Eqs. (22). 

Again, the value of B(I)( + I) and B(2l( - 1) can be obtained from 
Krenk's interpolation formulas (Hilb et aI., 1996): 

N 

8(1)(+ I) = MIl) '" B(I)B(I)(I"» 
J 

(230)z £ LJ E i: I 

/=1 

Fig.: 
an is N 

B~2)(-I) = M(," '" B I2 )B(2)(1121 .)	 
line 

<. LJ £ : +1-, (23b) diSCII , 

i=\	 take! 

where 

2i - I 7T] [ 2i - I ]
8~) = cot [ 2N + 1"2 sin 2iVl" N7T 

and 

M~!) = I, Bk2
) = sin [2~: I(LN - I)] esc [2~: I] 

In a similar fashion to the single edge crack, the stress intensity 
factors at y = a can be related to the dislocation densities from the 
following expression: 

(K, + iK,,)la = \'27TC1{[(iLl - i)A" + (iL2 - i)A21 

+ (iL, - ilA I2 + (iL2 - i)A22]8~')(+1) + [(iLl - i)A 12 

+ (iL2 - i)A n + (iL, - i)A II + (iL2 - i)A2I]B~')(+I)). (24) 

Similarly, the stress intensity factors at the other crack tip, y 
FiSh - a, are: 
a~ 

gr
(K, + iK,,)!h-a = - )27Ta{[(iLl - i)A,I + (iL2 - i)A 21 tho 

ce 
+ (iLl - i)A 12 + (iL2 - i)A22]B~2)(-I) + [(iLl - i)A12 

+ (iL2 - i)A 22 + (iLl - i)A II + (iL2 - ilA 2I ]B;2)(-I)). (25) 

Discussion of Results 
For an isotropic single edge crack under uniform tension, the 

mode I stress intensity factor expression given by Tada it et al. 
(1985) is: 

0.857 + 0.265a 
F = 0.265(1 - a)4 + (I _ a) 312 (26) 

where a = a/h. The comparison of present results (discrete 
points) and those from Tada's formula (continuous line) are shown 
in Fig. 3(0). The agreement is satisfactory with the relative error 
within 9%. It should be mentioned that the isotropic solutions were 
calculated from the present fully anisotropic formulation by setting 
the complex parameters iLl = 1.0001 i and iL2 = 0.9999i. 

The effects of material anisotropy on the mode I stress intensity 
factors and the mode mixity for a single edge crack under uniform 
tension are shown in Figs. 3(b) and 3(e). Typical data for graphite/ 
epoxy were used, i.e., moduli in GPa: EL = 130, ET = 10.5, 
G LT = 6 and Poisson's ratio liLT = 0.28, where L and T are the 
directions along and perpendicular to the fibers, respectively. A 
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Fig.4(b) The effect of anisotropy on the mode I stress intensity factor of 
a double'edge crack configuration In a strip under uniform tension for a 
unidirectional graphite/epoxy with fiber orientation, fI, measured from 
the direction of the applied load. The length of each of the two cracks is 
a and the applied uniform tension is CT. 

Fig. 4(a) Mode I stress Intensity factor parameter, F, in K, = F(T-..;;;a, for 
an isotropic, double-edge crack In a strip under uniform tension, <T. The 
line is the Tada et al. (1985) relatlonship for an isotropic crack and the 
discrete data points are from the present anisotropic formulation when 
taken at the limit of isotropy. 

Fig. 4(c) The effect of anisotropy on the mode mixity, 1/1, of a double
edge crack configuration In a strip under uniform tension for a unidirec
tional graphite/epoxy With fiber orientation, 9, measured from the direc
tion of the applied load. The zero and 90 degree fiber angles Bre the 
orthotropic limits, corresponding to pure mode I, 1/1 = o. 
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an isotropic, single-edge crack In a strip under uniform tension, (T. The 
line is the Tada et al. (1985) relationship for an isotropic crack and the 
discrete data points are from the present anisotropic formulation when 
taken at the limit of Isotropy. 
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Fig.3(b) The effect of anisotropy on the mode I stress intensity factor of 
a single·edge crack In a strip under uhlfonn tension for a unidirectional 
graphite/epoxy with liber orientation, 9, measured Irom the direction of 
the applied load. The stress intensity factor, K" is normalized with the 
corresponding stress Intensity factor of an isotropic, infinite plate, 
uyt:;;B. 
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Fig. 3(c) The effect of anisotropy on the mode mixlty, '/1, of a single
edge crack in a strip under uniform tension for a unidirectional graphite/ 
epoxy with fiber orientation, 9, measure<! Irom the direction of the ap
plied load. The zero degrees "orrespond to pure mode I. A pure mode II 
case would give 90 degrees. 



unidirectional construction was considered with the fiber orienta
tion angle, e, varying from 0 to 90 degrees. The orientation angle 
e is measured from the x direction, i.e., e = 0 deg is when the 
crack is perpendicular to the fibers and e = 90 deg is when the 
crack is parallel to the fibers. Obviously, the limits of e= 0 and 90 
deg are the orthotropic cases. Both the normalized mode I stress 
intensity factors and the mode mixities increase as the relative 
length a = a/h increases. Because the crack is not symmetric, the 
mode I stress intensity factors at fiber orientation 0 and 90 deg are 
different and the difference is more obvious for longer cracks. In 
addition, the anisotropic single edge crack is under mixed-mode 
loading even though the external load is uniform and the crack is 
relatively short. As shown in Fig. 3(b) the effect of anisotropy on 
the mode I stress intensity factors is seen to be significant between 
30 and 60 degrecs and depends also on the relative crack length ci 
= a/h, being larger for cracks of relative larger length. The mode 
mixity lj; in Fig. 3(c) is def1ned as 

and expresses the relative amounts of mode I and mode II com
ponents. As expected, the mode II stress intensity factors are zero 
for orthotropic materials. The effect of anisotropy on the mode 
mixity is dependent on both the fiber orientation and the relative 
crack length. The fiber angle at which the mode mixity is maxi
mum shifts to the higher angles as the relative crack length 
increases. 

The other example we investigated is a rectangular plate with 
double edge cracks. The mode I stress intensity factors for an 
isotropic rectangular plate with double edge cracks under uniform 
tension are given by Tada et ai. (1985): 

K, = F (J" -.r;;; 

F=(I +0.122COS4~Ci)_):atan(~a), (27) 

where a = 2a/h. Figure 4(a) compares the values of F calculated 
from the present method (discrete points) and those obtained from 
Eq. (27) (continuous line), which indicates a very good agreement. 
The effect of anisotropy on both the mode I stress intensity factor 
and the mode mixity for double edge cracks under uniform tension 
is shown in Fig. 4(b) and Fig. 4(c). The effect of anisotropy on the 
mode I stress intensity factor is seen to be noteworthy at fiber 
angles 30 to 60 degrees, as in the single edge crack case. On the 
other hand, the mode mixity decreases as the edge cracks become 
longer and the crack tips are far away from the boundaries. Such 
differences in the behavior between a single and double-edge crack 
configuration are not surprising due to the lack of symmetry in the 
single-edge crack case, as opposed to the symmetric double-edge 
crack. 
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APPENDIX 

A Dislocation in an Anisotropic Half Plane 
Let us consider a state of plane strain, i.e., E" = y,. = y" = 

0, In this case, the stress-strain relations for the anisotropic body 
are (Lekhnitskii, 1981): Also, 

Tt
dens 

(A la) 

where Ci U are the compliance constants (we have used the notation 
1 == x, 2 ~ y, 3 =: Z, 6 =: xy). 

Using the condition of plane strain, which requires that Eu = 0, 
allows elimination of (J"", i.e., 

(A Ib) 

Equations (la) can then be written in the form 

(Ale) 

where 

a,3 CXr· 
{3ij = aij - -~-- (i, j = 1,2,6). (Aid) 

~33 

Problems of this type can be formulated in terms of two com
plex analytic functions r/J,( z,) (k = I, 2) of the complex variables 
z, = x + /-L,y, where /-L" ii" k = 1, 2 are th roots of the 
algebraic equation: 

It was proven by Lekhnitskii (198 I) that Ihese roots /-LI , /-L" iii , ii, 
are either complex or purely imaginary, i.e., Eg. (2) cannot have 
real roots. Here, /-LI and /-Ll are chosen to be the ones with positive 
imaginary parts. 

The stress and displacement components can be expressed in 
terms of eJ:>,(z,) as (Lekhnitskii, 1981): 

(A3a) 
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(T" = 2 Re[cP; (Zl) + cP;(Z2)], (A3b) 

Tn = -2 Re[lLlcP'I(ZI) + 1L2cP;(Z2)], (A3e) 

Now, the complex stress potentials at a point? = x + iy due 
to a single dislocation at Zu = Xo + iyo in an anisotropic half plane 
arc given by Lee (1990). Only the results are presented here. 

The derivatives of the complex stress potentials at Z due to a 
dislocation at Zo, are given as: 

(Ma) 

(Mb) 

The first terms in cP',(ZI, zu), cP;(Z2, 7.0) are the singular 
solutions for an infinite domain and the second terms are the 
regular solutions pertinent to a half plane. The material coefficients 
are: 

(Me) 

Also, 

(Md) 

The complex coefficients A I and A2 are related to dislocation 
densities b = b, + ib, as: 

AI = Allb + A'2b (ASa) 

A2 = A21 b + Anb (ASb) 

Then, $j,r (z,), $~,)' (Z2) and $ \"j' (z,), $i,·r (z 2) can be calculated 
from Eqs. (A4), (AS) by setting b = I and b = i, respectively. 
Subscquently, the stre ses G "j and G,., can be detcrmined from the 
complex stress potentials. For exampll:, 

The complex parameters A" are material properties, which can 
be found as follows. A j constitute the solution of the following 
equations: 

0, -1', O2 -1'2 A, 
-I', 81 -1'2 82 AI 

P(ILI) -p(iL,) P(1L2) -P(iL2) A2 ]
-P(ILI) p(iLI) -P(IL>! p( iL2) A2r 11 

0 
(A6a)b/2ni~1 

0 

]
-b/2ni 

where 

Therefore, if we denote by A, the solution to (A6) for b = I and 
by Ai the solution to (A6) for b = i, then from (AS), for b = I, 

and for b = i, 

and these four equations ean be solved for A ij , i, j = I, 2. For 
example, 

All = [,1,(1) - iA i (l)]/2. (A7) 
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