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The mode I and 11 stress intensity factors in a fully anisotropic infinite strip with a
Halylng Huang sing/e-edge or zlo_ul)le—e?lgv cruck'conﬁgm‘atinn are ohla_in.e(/ﬂ'om'an upp_rua('lz !)ase?d on
Graduale Ressarch Assistant the continuous z!ts/ocal@n technique. The ef/uslrc solution of a single dzs.lm'utwn in an
anisotropic half plane is used in conjunction with an array of dislocations along the
boundary of the infinite strip, which is supposed to be traction-free, to provide the solution
George A. Kardomateas of a single dislocation in an anisotropic infinite strip. The dislocation densities of the
Profess dislocation array are determined in such a way that the traction forces generated by the
dislocation array cancel the residual tractions along the boundary due to the single
Sehool of Aerospace Engineering, dislocation in tlzle'halfplanc. 'I"/u' slr"cssﬁe{d ofa‘sin,q[c disloc.arion il.l the inﬁn{le Strip is
Georgia Institute of Technology, thus a superposition of that of r/u.' single dislocation anld the dislocation array m.zhe Izq(f
© Atlanta. GA 30332-0150 plane. This solution is then applied to calculate the mixed mode I and 1l stress intensity
factors for a single-edge and a double-edge crack in the anisotropic strip, by replacing the
cracks with a series of dislocations and satisfying the crack surface traction-free condi-
tions. To illustrate the results, typical material data for graphite/epoxy were used in a
unidirectional construction with the fiber orientation, 6, measured from the load direction
(perpendicular to the crack direction), varying between 0 and 90 degrees. It is found that
the effect of anisotropy on the mode I stress intensity factor is significant between 30 and
60 degrees and depends strongly on the relative crack length, being larger for cracks of
relative larger length. The mode mixity, defined such that it is zero for pure mode I and
90 degrees for pure mode I1, is significant between 40 and 70 degrees, and is in general Fis
between zero and 20 degrees. sin
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Introduction merical method. The crack tip stress intensity factors can be ‘_H
. 3 ; normally calculated from the dislocation densities. .
The extensive use of composites in the last decades for high A e ——— : dis : de
5 gy i . ¢ stated that the continuous dislocation approach has -
pgrformance, [9»‘{ wexghF structures r‘nonva'tu the nc_ed for mod- been mostly applied in determining stress intensity factors for ;
e}mg :Lmd prcdlctlng their gructurul r?eha'wor_and failure ”}C?dc“' relatively simple configurations. This is because the number of -
Especially, interlayer cracking (delamination) is a common failure ¢ 4amental solutions available for the various kind of disloca- 3
mode of laminated composites. In most cases, these cracks are  ionq i Timited to simple geometries such as infinite space, half |
subjected to mixed-mode loading and the mode I and mode Il plune, near a circular inclusion, etc. In addition, the stress distri- l(i
stress intensily factors at the crack tip are needed in order to  bution of the structure without cracks should be easy to calculate. :
predict the propagation behavior. In addition to interlayer cracks, — This is why many publications based on this method deal with s
intra-layer cracking has been observed to take place in certain infinite plates or strips subject to uniform far field loading (Gupta 3
stacking sequences (Pelegri and Kardomateas, 1998). and Frdogan, 1974; Civelek and Erdogan, 1980; Civelek, 1985). ]
Mixed-mode stress intensity factors can be calculated by various Very few papers have dealt with nonisotropic cracks in finite or I
methods. A detailed review of stress intensity factor calculation — semi-infinite bodies. An edge crack in a strip with edge loading
can be found in Cartwright and Rooke (1975). One of the most  was studied by Thouless et al. (1987) and by Suo (1990), whereas 1
effective methods is the distributed dislocation technique, which is ~ as far as solutions in orthotropic materials, the distributed dislo-

a semi-analytical technique. The basic idea of the distributed
dislocation technique is to model the cracks by continuous dislo-
cations along the crack lines in otherwise perfect bodies. Hills et
al. (1996) have a detailed description of applying the distributed
dislocation technique to solve the isotropic crack problem. Based
on an implementation of Bueckner's (1958) theorem, the crack
problem is usually solved in three steps: first the traction forces
along the cracks are found in the absence of the cracks. Second, the
stresses due to dislocations along the crack lines are found in the
same geometry. Finally, the distribution of dislocations is deter-
mined in such a way that the traction-free conditions along the
crack surfaces are satisfied. In order to achieve this, an integral
equation is established which typically must be soived by a nu-
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cation method was employed by Suo (1990) and Suo and Hutchin-
son (1990) to obtain the stress intensity factors for an orthotropic
strip. The method employed for the field in the unflawed strip was
an Airy stress function solution with Fourier transforms. Suo
(1990) also discussed the possible extension to an anisotropic strip.
In earlier studies, Georgiadis and Papadopoulos (1987. 1988)
investigated an orthotropic infinite strip with a semi-infinite crack
mid-distance of the strip faces by using Fourier transforms in
combination with the Wiener-Hopf technique. In a more recent
study, Qian and Sun (1997) obtained stress intensity factors for
interface cracks between two monoclinic media, by either calcu-
lating the finite-extension strain energy release rates or utilizing
the relationships between the crack surface displacements and the
stress intensity factors, both carried out with a finite element
analysis.

A solution to the problem of a fully anisotropic strip with a
single-edge or double-edge cracks is presented in this paper. A
different approach than the Fourier transform method of Suo
(1990) is followed in this paper. First, the elastic solution of a
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Fig. 1 Single dislocation in an infinite strip as a superposition of a

single dislocation in a half plane and an array of dislocations at the
boundary of the strip

dislocation in an anisotropic infinite strip is derived by assigning
an array of dislocations along a line in the half plane which is
supposed to be the boundary of the infinite strip. The dislocation
densities of these added dislocations are determined by satisfying
the traction-free boundary conditions. The stress fields of a single
dislocation in the anisotropic strip is thus the combination of that
of the single dislocation and those of the dislocations distributed
along the boundary. Subsequently, the elastic solution is employed
to calculate the mixed-mode stress intensity factors of single- and
double-edge cracks in the anisotropic infinite strip. The material
anisotropy and the crack length effects on the Mode I and II stress
intensity factors are investigated.

Formulation

A Dislocation in a Fully Anisotropic Strip. As shown in Fig.
1. the geometry of a dislocation in an infinite strip can be decom-
posed into two geometries. The first one is a half plane with a
single dislocation located at point (x,, y,), for which the elastic
solution of the dislocation can be found in Lee (1990) and is
summarized in Appendix A. In short, the stress components at
point (x, y) due to a dislocation B = B, + (B, located at (xg, yo)
can be expressed as:

o-ij(xv )’) = H. (-‘ (s ,\‘O)va-(xv Yy Ao )’0)
+ B, (x0, ¥0) G,y (x, y. X, ¥o), (1)

where ij = xx, yy, xy and G, (x. y, x4, yo) are the stress
components at (x, y) due to a unit dislocation B, = 1 at (x,, y,)
and G (x, v, x, y,) are the stress components at (x, y) due to a
unit dislocation 8, = | at (x,, yo).

Accordingly, the tractions along the dashed line. which is sup-
posed to be the boundary of the infinite strip. due to the single
dislocation B(xg, v,) in the half plane are:

o W(x, h) = B,(x0, ¥0) Gy (X, k, x5, ¥o)

2 [f ('\'l' y(})(;\'_\'_\'(x3 h" XO* .v[))v (261)
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and,

o(x, ) = B (xg, y0) Gy (x, A, x4, ¥o)

+ B, (x, ¥0)G, (X, h, X0, yo).  (2b)

The second geometry is a half plane with an array of disloca-
tions along the dashed line. The dislocation densities of the dislo-
cations h(x, /) along the boundary are determined in such a way
that the tractions generated by these dislocations along the dashed
line o);'(x, A) and o/'(x, h) are the opposite of o!)'(x, k) and
o). (x, h). Thus the traction-free boundary conditions of the
infinite strip are satisfied after superposing these two geometries
together. Suppose that the dislocation array b(t, h) = b (¢, h) +
ib,(t, ) are distributed from — (o o, then the tractions along the
dashed line are:

o¥Wx, h) = J [b.(t, WG, (x, h,t, k)

—x

+b,(t. h)G,, (x, h, t, h)]dt = —o'(x, k), (3a)
o\(x, h) = j [b.(t, WG, . (x, h, t, k)
+ b,(t, )G, (x, b, t, h)]dt = =o' )(x, k). (3b)

where o, are defined in Eq. (2).

The functions G,,,(x. h, t, h), G, (x, h, t, h), G (x, h,t, h)
and G, (x, h, t, h) are singular at x = ¢, Since the single
dislocation is in self-equilibrium, the tractions o!)'(x, k) and
ol(x, h) vanish as t — —o, +2. As a restclt, the dislocation
densities b.(t, ) and b (1, h) go to zero as t — —«x, +»®,
Therefore, for calculation purposes, in the singular integral equa-
tions (3) we can ignore the dislocations located at x > d and x <
—d, where d is a value large enough compared to A. A value of
d = 100k was found to be more than adequate for this purpose.
Thus, Egs. (3) become:

d
o Wx, h) -j [b,(t, )G, (x, h.t, k)

—d

+b(t, )G, (x, h, t, W)]dt = —o)(x, k), (4a)
oW x, h) = J [b.(t, K)G .\ (x, A, t, h)
—d
+b,(t, NG, (x, h, t, 1)]dt = —o(x, k). (4b)

Now, normalize Eq. (4) as following:

so that thesc equations can be written in the form:

1 ! N
o= md —J’ b (t, )G, ;(x, h, t, h)
'

=l
+ b,(t, NG (x, by t, )]dE = =0 (x, h),
ij=xx,xy (5

We can actually enforce that b(r, k) = b(f, h) + ib,(t, h) be
zeroatf = —land? = 1 (t = —d and ¢ = d) assuming that d
is large enough. This can be buill into the solution by expressing
b(t. h) as the product of a fundamental function W(7) and an
unknown function A(z, k) (Hills et al., 1996):
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b(t) = W()b(r, h); W) = \-I -1 (6)

Substituting Eq. (6) into Eq. (5), the numerical form of the
| ]

singular integral equations can be expressed as:

wd| _: Wb (1, h)G,, (xi, h. t;, h)

+ > Wh.(i. hG (x:, B, t;, B)] = =0 (x,, h),

ij=xx,xy k=1,...,N+1 (D

where 1, are the N discrete integral points and £, are the collocation
points and W, are the weight coefficients:

3 mi _ 7(2k —1)]
1= (U‘-{ N+ | ) 5, & cos 2(N + _|l ]
1= &
ol N + l '5)

Equation (7) allows us to determine the dislocation densities
b(r,, h) of the dislocation array along the dashed line, which
cancel out the residual tractions due to a single dislocation B(x,,
yo) in the first geometry. After the dislocation densities b(1, , k) are
known, the stress components at every point (x, y) in the second

geometry can be calculated as following,

N
T |x‘\|77-]!1'\1'[')(1~ h)Gi(x, y, t:. h)
i=1
N
+ > Wb, (i, h)G,,(x, v. 1, ] 9)
-1
where ij = xx, yy and xy.

Obviously, the dislocation densities b(z,, #) along the dashed
line are related to the single dislocation B(.x,, v,) in the half plane.
Denoting the dislocation densities b(r,, h) as b"''(t,, h) = b1

h) + ib."(t,, h) for a single dislocation B(x,, y,) = 1 and as
bty h) = b7(t,, h) + ib)(t,, h) for a dislocation B(x,,
ve) = i, and superposing these two elastic fields, we have:

G.i(x, ¥) = Gi(x, ¥) + wd| N W b (1, G (x, v, t;, h)

i=1
N
+ L Wb (1, WG ;(x, v, t;, )], (10a)

and

{ \ i ) 4
G.ilx. )= G,y(x, y) + m[lﬁ,\_/ Wbl(t, h)G . (x, v, t,, h)

+ : WbhY'(r,, h)G (x, v, t,, h)]. (10b)

where ij = xx, vv and xv.

Physically, G, (x, v) in Eq. (10a) represent the stresses at (x, y)
due to a dislocation B, = 1 at (x, v,) in the infinite strip;
Similarly, G, (x, v) in Eq. (10b) represent the stresses at (x, ¥)
due to a dislocation B, = 1 at (x;, v,) in the infinite strip. Because
of the linearity of the elastic fields of the dislocation, the stress
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Fig. 2 Single-edge crack represented by an array of dislocations, B =
B, + iB,, determined so that the traction-free conditions at the crack site
are satisfied

components at (x, y) due to a dislocation B(x,, y,) = B .(x,,
Yo) + iB,(x,, yo) in the infinite strip are:

a;i(x, ¥) = B,(x0, o) Gy (x, Y+ Xos Yo)

+ B, (xg, y0)G,;(x, y, xa. ¥0), (1)

Next, this elastic solution of the dislocation in an anisotropic
infinite strip is used in the single-edge crack and the double-edge
crack configuration.

A Single Edge Crack Under Uniform Tension. An infinite
strip with an edge crack subjected to uniform tension is considered
next. As shown in Fig. 2, the edge crack, of length a, is located in
the lower half of the infinite strip and is aligned with the y axis.
Thus, the crack tip is at y = a. Replacing the crack with a series
of dislocations, we find that the singular integral equations that
ensure crack surface traction-free condition for the edge crack are:

a0, y) = [B.(0, 1)G,.(0,y, 0,1

Y0

+ B,(0, 1)G,,.(0, v, 0, )]dt = —0vy. (12a)

and

0, y) = [B.(0, )G,..(0, v. 0, 1)

T,

+ B,(0,1)G,,.(0,y,0, 1)]dt =0. (126)

The foregoing equations ensure that the tractions ¢’ and o),
cancel out the tractions along the crack face due to the external
loading, which is o in our case. It should be mentioned that the
edge crack is a surface-breaking crack and the stress components
are not singular at both ends of the crack. The Gaussian quadra-
ture, which would be employed to solve the singular integral
equations, has to be chosen carefully so that it includes all the
appropriate end-point asymptotics. First, the integral equations are
normalized through the following substitutions:

2t —a oy =

a ' a

50 that Egs. (12) can be written in the following form:
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l _ ;
H’j"‘(()‘ y) = ma = [ B,(0, )G, (0, y, 0, t)dt

o -l

1 _ i
B.(0, G0, y. 0, m//J = —g'7(y)

= [
(i J
(13)

ij = xx, xy

Now, B,(¢) and B,(z) must be singular at the crack tips ¢ |
(t = a) and bounded at 1 = 1 (+ = 0). Note that it has been
proven by Stroh (1958) that the crack tip stresses have a singularity
of the » " type in anisotropic materials, just as in the isotropic
case. Thus, the dislocation density B(t) should be expressed in the
following product of a fundamental function W(r) and an unknown
regular function B(f):

|

= . L I !
B(1) = W()B(t), W) = V= (14)
) el |

Substituting Eq. (14) into Eq. (13), the numerical form of the
singular integral equations can be expressed as:

rui}_: W.B.(0, t,)Gxxx(0, v;, 0, ¢,)

+ D, W,B,(0,1)G,..(0, v, 0, 1)} = —0y
k=1...N (l5a)

where ¢; are the N discrete integration points and y, are the ¥
collocation points and W, are weight coefficients:
27 )

/ 31~1) ) (
L, (‘(;\(TI’L\ 1 [* vy Vi COS \7;\

2N + 1
W, =
t 2N + 1

Also, y; = (ay, + a)/2 and 1, = (at, + a)/2. Similarly:

Tm{>_; W.B.(0, t,)G,

‘

(” Yk Ov [i)

+ > WB,(0,1)G,.,(0,v,,0,1)) =0,

k=1...N (15b)

As there are 2N collocation points and 2N integral points, Egs.
(15) are sufficient for the determination of the dislocation density
B(O, 1) B (0, A iB (0, 1,) along the edge crack. Of major
significance is the value of the dislocation density at the crack tip,
B(-+1), as it is directly related to the stress intensity factors. It can
be obtained from Krenk's interpolation formulae (Hills et al.,
1996):

B(+1) = M; >, B.B(1,), (16)

where

Mg= 7, _and
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2E—1 7y . 2i—=1
By = cot IN+12) S N l“\ . |

[he stress intensity factor at the crack tip y = a, is defined as:

K, + iK;=lim{\27(a — y)[o. (y) + it (V)].o}. (17a)

Using relations for the stresses in terms of the complex potentials
as in (A3), gives
im) ij,(:,)

K;+ iKy lim{\_Zﬂa - y) > (p?

+ (@l —ip)di(z)}. (17b)

Only the singular part of the stress potential contributes, which
is due to a dislocation at the crack tip, i.e., as y — a and z — z,,
therefore the first term becomes (see also Appendix):

A ALb(y)dy + ApLb(y)dy

dl(z,) = —

21— 21 dz,

A b)dy + Apb(y)dy

. (17¢)
o dy
Therefore, the first term in (17h) gives

lim \(27(a — y)(u, — DA, b(y) + Ab(v)], (17d)

=

and with the substitution t = (2y — ala and b(y)
BV (L — 0)/(1 1), it gives

+1

— — l
lim (ma(l — tj(p, — )[A,BU) + .\.,lfu)l\l :

= 2aa(p, — D[AB(+1) + ALB(+1)]. (17e)

A similar contribution exists from the w. term.
And the stress intensity factors at the crack tip y
to the dislocation densities at the crack tip as follows:

K+ iKy= \2ma{[(n, — DA, + (w2 — DAy + (@, — DA,
(Mz s i)Atz
+ (fiy DAy 1B(+1)), (18)

where Ay, 45, Ay, A, are defined in Appendix A and B(+1) is
given in (16). Notice that B(+ 1) is the complex conjugate of
B(+1).

+ (fty — D)An B+ 1) +[(w, — DA, +

= Z)”‘ll + (IJ

Double Edge Cracks Under Uniform Tension. Another ge-
omelry we studied is a rectangular plate with double edge cracks
subjected to uniform external load. Two edge cracks are of length
a and located symmetrically about the middle plane of the infinite
strip. Both cracks are aligned with the y axis. The lower edge crack
is denoted as crack I and the upper edge crack as crack II.

The crack surface traction-free conditions in Eq. (12) is for a
single edge crack and can be easily extended to the case of double
edge cracks. Choosing coordinate systems for edge crack [ and I1
as " and 1" (i = 1, 2), the expressions for the crack surface
tractions yield the following systems of singular integral equa-
tions:

o (y™) f B.(0, t")G,;:(0, y™, 0, ¢')drV
0

t J B0, t"G,, (0, y™, 0, t'")dr"

0
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h
+ J b.(0, "G (0, y™, 0, t¥)dt®
h

+ J b),(O, Z(ZJ)G‘:‘IU(O‘ »\v.(m)’ 0’ 1(2))(“12) — _O_la)(\,(m))
h

ij=xx,xy and m=1,2, (19)

Again, the integral equations are normalized through the fol-
lowing substitutions:

2t

and

L 2y¥ 2h 2 21(’) 2h
y & = e : (__ l) ) t(2)= ——1 ,
i a a a a

so that Eqs. (19) can be written in the form:

)
<% 1N L. o
ma 2, ;f B (1) G (y ™, 1Myt
1

j=1 -

T TR
+nj B,(1")G,;(y"™, tNdtD | = —gP(y™) i

-1
=xx,xy and m=1,2. (20)

R((i” ) and B,(z"") must be singular at the crack tip W=
" = = a) and bounded at the edge ¢ D= —1@"=0). The form
of B,(z*) and B (1) are the opposite of that of B,(") and
B,(t"), ie, B, (") and B (z‘z’) are bounded at 1¥ = 1 (+ = h)

and singular at 1 = —1 (1" = h — a). Expressing B(¢"") and
B(t'"') as
B ~ - _ 1 + 1)
Bty = w(EMB('");, wO(W) = Vi—® (21a)
B(E(‘,V) e W(l)(;.‘ )E(;(U) W(z)(;u‘n) = ~ (2”9)

Vv

and substituting Eq. (21) into Eq. (20), the numerical form of the
singular integral equations can be expressed as:

2 N
ma o, {> WPB, (1) Gy (™, 1))

=1 =1

N

+ 2 WPB,NG, k" 1)) = —oP(y(")

i=1
k=1...N, m=1,2 and ij=xx,xy (22)

where 1/ are the 2N discrete integration points; y." are the 2N
collocation points and W;"' are weight coefficients:

_ [Tr(Zi—l)} B [ w2k }
t =08 = i o yil=cos | z—— |

2N+ 1 2N+ 1
Wm:2(l+r )7
. 2N + 1
and
s 2i o 2k — 1
Pi=cs | moN+1|t T | Tavr1]”
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o = 2(1 — 4§
T O2N+

Also, y\" = (@3{" + a)/2, 1" = (at” + a)/2 and y{" =
@?2)y> + (h — (al2), 1 = (@l 2)i® + (h — (al2)).

Now we have 4N Imear equations to solve for the 4N un-
knowns, ie., BYG™MY = B.t") + iB,(1!") and B?(?) =
B.(1f ) + iB (1) can be solved at the discrete set of points 7{"
and ¢ from Egs. (22).

Again, the value of B(+ 1) and B':’(— 1) can be obtained from
Krenk’s interpolation formulas (Hills et al., 1996):

N
BU(+1) =M Y, BOBOGM), (23a)
1=1
N
BO(—1) =M X BPBOGR,-), (23b)
i=1
where
o = 2 = 21w 21
T Cf S IEITI || EELT
and
2) ;7\._ : 2 i -
My'=1, B [2N+1(ZN )} CSC[’.ZN%—J

In a similar fashion to the single edge crack, the stress intensity
factors at y = a can be related to the dislocation densities from the
following expression:

(K, + iKII)|a = \’27"51{[(#«1 — DA+ (o — DAy

+ (= i)AIZ + (R — 1:)/1:2]3?”("”1) + [(py — DA,

+ (o= DA»n + (1 — DA, + (o — DAL IBI(+1)). (24)
Similarly, the stress intensity factors at the other crack tip, y =
h — a, are:

(Ki + iKy)|hoa = — \/m{[(ﬂl — DA+ (2 — DAy

+ (o — i)A)z + (@, — i)Azz]B(zz)(’l) + [(,U«I — DA,

+ (o — DAp + (1 )An"‘(ﬁ_‘«z’"l)A (_1)} (25)

Discussion of Results

For an isotropic single edge crack under uniform tension, the
mode I stress intensity factor expression given by Tada it et al.
(1985) is:

K,= Fo \ma;

0.857 + 0.265«

F=0265(1—a) G (1'_‘&)_;: 5

(26)
where « = a/h. The comparison of present results (discrete
points) and those from Tada’s formula (continuous line) are shown
in Fig. 3(a). The agreement is satisfactory with the relative error
within 9%. It should be mentioned that the isotropic solutions were
calculated from the present tully anisotropic formulation by setting
the complex parameters ., = 1.00017 and w, = 0.9999..

The eftfects of material anisotropy on the mode I stress intensity
factors and the mode mixity for a single edge crack under uniform
tension are shown in Figs. 3(h) and 3(c). Typical data for graphite/
epoxy were used, i.e., moduli in GPa: £, = 130, E; = 10.5,
G,r = 6 and Poisson’s ratio v,y = 0.28, where L and T are the
directions along and perpendicular to the fibers, respectively. A
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Fig. 3(a) Mode | stress intensity factor parameter, F, in K, = Fo\/ wa, for
an isotropic, single-edge crack in a strip under uniform tension, o. The
line is the Tada et al. (1985) relationship for an isotropic crack and the
discrete data points are from the present anisotropic formulation when
taken at the limit of isotropy.
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Fig.3(b) The effect of anisotropy on the mode | stress intensity factor of
a single-edge crack in a strip under uniform tension for a unidirectional
graphite/epoxy with fiber orientation, §, measured from the direction of
the applied load. The siress intensity factor, K, is normalized with the
corresponding stress intensity factor of an isotropic, infinite plate,
oVra.
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Fig. 3(c) The effect of anisotropy on the mode mixity, s, of a single-
edge crack in a sirip under uniform tension for a unidirectional graphite/
epoxy with fiber orientation, 8, measured from the direction of the ap-
plied load. The zero degrees correspond to pure mode |. A pure mode ||
case would give 20 degrees.
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Fig. 4(a) Mode I stress intensity factor parameter, F, in K, = Fo\/=a, for
an isotropic, double-edge crack in a strip under uniform tension, o. The
line is the Tada et al. (1985) relationship for an isotropic crack and the
discrete data points are from the present anisotropic formulation when
taken at the limit of isotropy.
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Fig. 4(b) The effect of anisotropy on the mode | stress intensity factor of
a double-edge crack configuration in a strip under uniform tension for a
unidirectional graphite/epoxy with fiber orientation, 6, measured from
the direction of the applied load. The length of each of the two cracks is
a and the applied uniform tension is o.
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Fig. 4(c¢) The effect of anisotropy on the mode mixity, ¢, of a double-
edge crack configuration in a strip under uniform tension for a unidirec-
tiona! graphite/epoxy with fiber orientation, #, measured from the direc-
tion of the applied load. The zero and 90 degree fiber angles are the
orthotropic limits, corresponding to pure mode |, ¢ = 0.
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unidirectional construction was considered with the fiber orienta-
tion angle, 0, varying from O to 90 degrees. The orientation angle
f is measured from the x direction, i.e., # = 0 deg is when the
crack is perpendicular to the fibers and 6 = 90 deg is when the
crack is parallel to the fibers. Obviously, the limits of 6 = 0 and 90
deg are the orthotropic cases. Both the normalized mode I stress
intensity factors and the mode mixities increase as the relative
length a = a/h increases. Because the crack is not symmetric, the
mode I stress intcnsity factors at fiber orientation 0 and 90 deg are
different and the difference is more obvious for longer cracks. In
addition, the anisotropic singlc edge crack is under mixed-mode
loading even though the external load is uniform and the crack is
relatively short. As shown in Fig. 3(b) the effect of anisotropy on
the mode I stress intensity factors is seen to be significant between
30 and 60 degrecs and depends also on the relative crack length @
= alh, being larger for cracks of relative larger length. The mode
mixity ¢ in Fig. 3(¢c) is defined as

- -1 .K”>

p=an (F
and expresses the relative amounts of mode I and mode II com-
ponents. As expected, the mode II stress intensity factors are zero
for orthotropic materials. The effect of anisotropy on the mode
mixity is dependent on both the fiber orientation and the relative
crack length. The fiber angle at which the mode mixity is maxi-
mum shifts to the higher angles as the relative crack length
increases.

The other example we investigated is a rectangular plate with
double edge cracks. The mode I stress intensity factors for an
isotropic rectangular plate with double edge cracks under uniform
tension are given by Tada et al. (1985):

K, =Fo \,wav;

(7”“) .

(1+0 22 )yz
F= \ I cos* \’ 5

where o = 2a/h. Figure 4(a) compares the values of F calculated
from the present method (discrete points) and those obtained from
Eq. (27) (continuous line), which indicates a very good agreement.
The effect of anisotropy on both the mode I stress intensity factor
and the mode mixity for double edge cracks under uniform tension
is shown in Fig. 4(b) and Fig. 4(c). The effect of anisotropy on the
mode I stress intensity factor is seen to be noteworthy at fiber
angles 30 to 60 degrees, as in the single edge crack case. On the
other hand, the mode mixity decreases as the edge cracks become
longer and the crack tips are far away from the boundaries. Such
differences in the behavior between a single and double-edge crack
configuration are not surprising due to the lack of symmetry in the
single-edge crack case, as opposed to the symmetric double-edge
crack.
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APPENDIX
A Dislocation in an Anisotropic Half Plane
Let us consider a state of plane strain, L.e., €. = vy,. = y,. =

0. In this case, the stress-strain relations for the anisotropic body
are (Lekhnitskii, 1981):

€ox Ay Ay, O3 e O xx

€y B Ay Gy Qpz Qg Oyy (Ala)
€. Qi3 O3 Q33 Qg o |’

Yy Qg Qe Oizg  Qgg Ty

where a; are the compllance constants (we have used the notation
l=x,2=y3=72 6= xy).

Using the condition of plane strain, which requires that .. = 0,
allows elimination of o, le.,

[
O == (@30, + a30,,). (Alb)

- 33

Equations (la) can then be written in the form

€x B Bz Bis O xx
€y | =| Bz B B Ty |, (Alc)
Vv Bis B Bes Tey
where
Qnljps <
Bi=a;——— (,j=1,2,6). (Ald)
33

Problems of this type can be formulated in terms of two com-
plex analytic functions ¢,(z,) (k = 1, 2) of the complex variables
i = x + gy, where py, oy, k 1, 2 are the roots of the
algebraic equation:

BIIIJ“.; - 2,8|6/~L3 + (2812 + Bos) it = 2Bsep + By = 0. (A2)

It was proven by Lekhnitskii (1981) that these roots g, , (s, i, . 12
are either complex or purely imaginary, i.e., Eq. (2) cannot have
real roots. Here, u, and w., are chosen to be the ones with positive
imaginary parts.

The stress and displacement components can be expressed in
terms of ®,(z,) as (Lekhnitskii, 1981):

0. =2 Re[uidi(z) + pnidi(z:)], (A3a)

Transactions of the ASME

Now
to a sin
are giv

The
disloca

(I);(Zh

Th
soluti
regul:
are:

Also.

dens




o, =2 Re[¢1(z)) + ¢3(z2)],
To = =2 Re[p191(2)) + padi(z,)],

Now, the complex stress potentials at a point 7 = x + iy due
to a single dislocation at z, = x, + iy, in an anisotropic half plane
are given by Lee (1990). Only the results are presented here.

The derivatives of the complex stress potentials at z due to a
dislocation at z,, are given as:

(A3b)
(A3c)

Bile,, 20) = — I['- B.6,) —
B _&1'310 A n 52 Z;— Zp
+ (v27. — 6v52) jl . (Ada)
“1 0
. A, I _ A)
5(z5. 29) = = " A (viy, 8|5|)7 =
2 <20 <2 <10
A
+(y ¥ = 8,8,) ——=| . (Adb)
22 — 20

The first terms in @'(z,, zo), $i(z,, z0) are the singular
solutions for an infinite domain and the second terms are the
regular solutions pertinent to a half plane. The material coefficients

are:
Ye=1 —ipy; & =1+iuy,
k=1,2 and A =1v,8,— v,6,. (Adc)
Also,
zi=[(0—ipn)z+ (1 +ip)z)2, i=1,2 (Add)

The complex coefficients A, and A, are related to dislocation
densities b = b, + ib, as:

A=A, b+ AL (ASa)

A, = Ay b + Aypb (ASh)
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Then, ¢{™(z,), 57 (z2) and $!” (z,), $” (z.) can be calculated
from Egs. (A4), (AS) by setting b = 1 and b = i, respectively.
Subsequently, the stresses G, and G .., can be detcrmined from the
complex stress potentials. For example,

Gux = 2 Re[pid| + pids”].

The complex parameters A, are material properties, which can
be found as follows. A; constitute the solution of the following
equations:

o __3’1 &, "_3’2 é| l

i 0 — 2 0, A,
py) () plus) —p(@,) /éz
() pl) —p(us) p(iy) A,

0

0

=1 bi2m (Aba)
—b/2i
where

pl) = (Bir — Bioi + .B:IMi) + (B — Baski + anlJ«f)/ML—

and  p(pe) = p(pe). (A6b)

Therefore, if we denote by A, the solution to (A6) for b = | and
by A, the solution to (A6) for b = i, then from (A5), forb = 1,

A=A+ ALR=A(])) A=A, +A,=A4A03)

and for b = i,

A=A —Ani=A(l); Ay=Ay,i—Ani=A03)

and these four equations can be solved for A, i, j = 1, 2. For
example,

A =T[A(1) —iA(1)]/2. (A7)
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