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ABSTRACT: An improved elasticity solution to the problem of buckling of orthotropic cylindrical shells sub­
jected to external pressure is presented. The 2D axisymmetric cylindrical shell is studied (ring approximation). 
Specifically, in the development of the governing equations and boundary conditions for the buckling state, the 
solution includes the tenns with the prebuckling nonnal strains and stresses as coefficients (i.e., the tenns 
e~ka0 and a~e0' which were neglected in the earlier work as being too small compared to the tenns a 0 and 
a~kw; , respectively). The fonnulation results in a two-point boundary eigenvalue problem for ordinary differential 
equations in r, with the external pressure p as the parameter. The results show that the effect of including the 
nonnal strains and stresses is to further decrease the critical load. This decrease (versus the earlier elasticity 
solution without these tenns) depends on the shell thickness and is generally moderate, and in no event com­
parable with the (quite large) decrease of the elasticity versus the shell theory prediction. This decrease depends 
also on the degree of orthotropy, and it is smaller for the isotropic case. Finally, a fonnula is derived for the 
critical pressure based on a first-order shear defonnation fonnulation, and the comparison shows an improvement 
versus the classical shell for thick shells, but still the elasticity solution is noticeably lower than the first-order 
shear defonnation prediction. 

INTRODUCTION 

Shell buckling has traditionally been studied by use of clas­
sical shell theories [e.g .. Simitses and Aswani (1974) and Sim­
itses et 0.1. (1985)]. However, the application of fiber-rein­
forced composite materials in configurations of laminated 
shells necessitates the use of improved methods of buckling 
analysis. This is a result of the anisotropy and because of one 
other important distinguishing feature, namely an extensional­
to-shear modulus ratio much larger than that of their metal 
counterparts. In addition, composite shells are envisioned in 
applications involving relatively thick construction (submers­
:bles, support columns, etc.). 

Therefore, improved shell theories have been formulated by 
Whitney and Sun (1974), Librescu (1975), Reddy and Liu 
(1985), and others. These higher-order shell theories can be 
applied to buckling problems with the potential of improved 
predictions for the critical load. To this extent, Simitses et al. 
(1993) used the Galerkin method to produce the critical loads 
of cylindrical shells under external pressure, as predicted from 
the first-order shear deformation (FOSD) and the higher-order 
shear deformation theories. It was concluded that for moder­
ately thick cylinders (with a ratio of outside-over-inside radius 
of about 1.03), the FOSD theory with a modest shear correc­
tion factor provides an adequate correction to the critical load 
(as compared with the improvements from the higher-order 
theories). 

The existence of these different shell theories underscores 
the need for benchmark elasticity solutions to compare the 
accuracy of the predictions from the classical and the im­
proved shell theories. Several elasticity solutions for composite 
shell buckling have become available. In particular. Kardom­
ateas (l993a) formulated and solved the problem for the case 
of uniform external pressure and orthotropic material; a sim­
plified problem definition was used in this study ("ring" as­
sumption), in that the prebuckling stress and displacement field 
was axisymmetric and the buckling modes were assumed 2D 
(i.e., no Z component of the displacement field and no ,:-de­
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pendence of the rand e displacement components). The ring 
assumption was relaxed in a further study (Kardomateas and 
Chung 1994), in which a nonzero axial displacement and a 
full dependence of the buckling modes on the three coordi­
nates was assumed. 

A more thorough investigation of the thickness effects was 
conducted by Kardomateas (1993b) for the case of a trans­
versely isotropic thick cylindrical shell under axial compres­
sion. This work also included a comprehensive study of the 
performance of the Donnell (1933), Sanders-type (1963) 
(which was also referred to as the "nonsimplified Donnell­
type" theory), Ailgge (1960), and Danielson and Simmonds 
(1969) theories for isotropic material in the case of axial com­
pression. In a later study, Kardomateas (1995) considered a 
generally cylindrical orthotropic material under axial com­
pression. In addition to considering general orthotropy for the 
material constitutive behavior, the latter work investigated the 
performance of another classical formulation [i.e., the Timo­
shenko and Gere (1961) one]. Other 3D elasticity results were 
provided by Soldatos and Ye (1994) based on a successive 
approximation method. These results were provided for the 
buckling of complete hollow cylinders subjected to combined 
axial compression and unifonn external pressure and the buck­
ling of open cylindrical panels subjected to axial compression. 

The elasticity solutions presented by Kardomateas ( 1993a,b, 
1994, 1995) were based on certain orders of magnitude ar­
guments for the termS involved in the 3D nonlinear elasticity 
equations for the perturbed (buckling) versus the prebuckling 
state quantities. For example, use was made of the fact that a 
characteristic feature of stability problems is the shift from 
positions with small rotations to positions with rotations sub­
stantially exceeding the strains. If we denote the linear strains 
e'i and the linear rotations Wi and use the superscript 0 to de­
note the prebuckling state and the prime (') to denote the per­
turbed state, then in these elasticity solutions. the terms eijaZ 
were neglected, thus keeping only the w; aZ tenns. In addition, 
the terms that have e:; and wJ as coefficients were neglected 
(i.e., terms e5a;i and wJa;J. Also. in the prebuckling equa­
tions, the terms that have e~ and wJ as coefficients (i.e .. tenns 
eZaZ and wJaZ) were neglected, thus only using the linear 
classical equilibrium equations for the initial position of equi­
librium. 

[n this work, we revisit the issue of neglecting these normal 
strain and normal stress terms to investigate the degree of in­
Ruence these terms may have on the critical load. The simplest 
configuration is studied, namely the 20 axisymmetric cylin­
drical shell (ring approximation) that was studied in Kardom-

JOURNAL OF AEROSPACE ENGINEERING / JULY 2000/85 

r=------=--------------------------.........­



areas (1993a). Numerical results for a standard glass/epoxy 
and an isotropic material are derived and compared with the 
predictions of the shell theory and the elasticity solution with­
out the normal stress and strain terms of Kardomateas (1993a). 
It will be shown that the effect of these terms is to render the 
critical load even lower, and that this effect is more pro­
nounced with increased thickness. However, this effect is very 
small with moderate thickness, and in no way compares with 
the (quite large) decrease of the elasticity versus the shell the­
ory prediction. 

FORMULATION 

We shall refer to specific equations in the formulation of 
Kardomateas (1993a) and point out the improvements intro­
duced in the present analysis. At the critical load, there are 
two possible infinitely close positions of equilibrium. The r, 
e, and z components of the displacement corresponding to the 
primary position are denoted by £10, Vo, and Wo, respectively. A 
perturbed position is denoted by 

u=uo+au,; v=1Jo+av,; w=wo+aw, (I) 

where a = infinitesimally small quantity. Here, aUl(r, e, z), 
av,(r, e, z), and aw,(r, e, z) are the displacements to which 
the points of the body must be subjected to shift them from 
the initial position of equilibrium to the new equilibrium po­
sition. The functions u,(r, e, z), vl(r, e, z), and wl(r, e, z) are 
assumed finite, and a is an infinitesimally small quantity in­
dependent of r, e, and z. 

The stress-strain relations for the orthotropic body are as 
follows: 

rrrr Cil CI2 C'3 0 0 0 E" 
rree C'2 C~2 C23 0 0 0 Eee 
rre: 
Te, 

C'3 

0 
C'3 

0 
Cn 

0 
0 

C.w 

0 
0 

0 
0 

Eo: 

"Ie, 
(2) 

Tn 0 0 0 0 C55 0 "I" 
Tre 0 0 0 0 0 C66 "Ire 

where C'i =stiffness constants (we have used the notation 1 ­
r, 2 == e, 3 == z). 

In the following, we shall use eu to denote the linear strains 
and Wi to denote the linear rotations. The equilibrium equations 
in terms of the stresses and the linear strains and rotations are 
given by Kardomateas (1993a, equation 9). For completeness, 
we repeat the first of these equations here 

:r [rrrr(l + e,,) + Tre Gere - w,) + T" Ge.. + we) ] 

+ ~ aa [Tre(t + err) + rree Gere - w,) + 'e, Gen + we)]e 

+ :z [T,,(l + err) + Te, Gere - w,) + rr" Ge.. + we)] 

+ ~ [ rr,A 1 + e,,) - rrRn(l + eoe) + T r, GI', + we) 

- T e, e., - wr) - 2Tr,w,] = 0G
Introducing the linear strains and rotations in the form eu = 

e~ + ae ij, Wi = wJ + aw;, as well as the stresses from rru = 
rr~ + arr,; and keeping up to the a l terms, we obtain a set of 
equations for the perturbed state in terms of the e~, wJ and 
e~. w;. Notice that e~ and wJ are the values of eu and Wi for 
u = £10. V = Vn, and w = Wo, and e ~ and w; are the values for 
£I = £I" V = v" and IV = WI' 

Although the displacements £10' Va, and IVo correspond to 
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positions of equilibrium, there must also exist equations of the 
same form with the zero superscript, which are obtained by 
referring to the initial position of equilibrium. Thus, after sub­
tracting the equilibrium equations at the perturbed and initial 
positions, we arrive at a system of homogeneous differential 
equations that are linear in the derivatives of £I" VI, and w, 
with respect to r, e, and z. This follows from rrij, e ij, and w; 
appearing linearly in the equation, and they are linear func­
tions of these derivatives. The system of equations, corre­
sponding to Kardomateas (1993a, equation 9) at the initial 
position of equilibrium, is, on the other hand, nonlinear in the 
derivatives of Llo, Va' and Wo-

However, if we make the additional assumption to neglect 
the terms that have e~ and wJ as coefficients (i.e., terms 
e~rr~ and wJrrZ), we can use the linear classical equilibrium 
equations to solve for the initial position of equilibrium. More­
over, if we make the assumption to neglect the terms that have 
eZ and wJ as coefficients (i.e., terms eZrrij and wJrrij) and fur­
thermore, because a characteristic feature of stability problems 
is the shift from positions with small rotations to positions 
with rotations substantially exceeding the strains, if we neglect 
the terms e ijrrZ, thus keeping only the w; rrZ terms, we obtain 
the buckling equations as shown in Kardomateas (1993a, 
equation 10). For completeness, we repeat the first of these 
equations here 

Now, let us relax the assumption to neglect the terms that 
have eZ as coefficients (i.e., let us keep the terms e'trr,;), and 
let us also relax the assumption to neglect e ijrrZ in comparison 
to w; o<~ (i.e., let us keep the terms e;lrr~). 

Because we are dealing with a case in which the pre­
buckling shear stresses and strains are zero (i.e., T~6 = T~ = 
TZ, = 0 and e~e =e~ = eZ, = 0), the prebuckling rotations are 
zero (i.e., w~ =wZ = w~ = 0), and the prebuckling normal 
stresses and strains depend only on r, the first equilibrium 
equation with normal stress and strain terms is written 

a [' 0) O'j I a [ , (1 0) 0 (1, ')]or rrrr(l+e rr +rrrre" +;ae Tre +e rr +rr66 :zere-w, 

By comparison, the corresponding equation to the earlier elas­
ticity formulation of Kardomateas (1993a) is repeated here 

a , I a, a, t (' ') 0- rr" + - - (T re - rreewJ + - rr" - rr •• = (3b)or rae r 

The second equilibrium equation with normal strain terms 
is written 

-0[,(T,e 1 + eee) + rr" o(l, + w,0 -2 ere ')]
or 

+ ~ aa [rr~e(l + e~.) + rr~.e~.] + ~ [rr?r Ge;o + w:)e 

+ O'~. Ge;. - w:) + T;.(2 + e?r + e~e)] = 0 
(4a) 

and by comparison, the corresponding second equilibrium 
equation in Kardomateas (1993a) is repeated here 



a ( , a ') 1 a , 1 , a, a, 0- T,e + a"w, + - - aee + - (2T,e + a"w, - aee w,) = 
ar r ae r 

(4b) 

Boundary Conditions 

Boundary conditions for hydrostatic loading in the context 
of shell theory can be found in Brush and Almroth (1975). In 
the context of the elasticity formulation, the complete set of 
boundary conditions is given in Kardomateas (1993a, equation 
12). For completeness, we repeat the first of these equations 
here 

[a,,(l + e,,) + T,e Ge,e - w,) + T" Ge" + we)] l 

+ [T,e(l + e,,) + a ea G e,e - w,) + Te, G e" + we) ] m 

+ [T,,(I + e,,) +Te,Ge,a-w,) + a:.:Ge" + we)] n=t, 

where t, = r-component of the traction vector on the surface 
that has outward unit normal fi = (t, m, n) before any defor­
mation. The traction vector t depends on the displacement field 
V = (u, v, w). Indeed, because of the hydrostatic pressure 
loading, the magnitude of the surface load remains invariant 
under deformation, but its direction changes (because hydro­
static pressure is always directed along the normal to the sur­
face on which it acts). 

Now, if we write these equations for the initial and the per­
turbed equilibrium position, then subtract them and take into 
account the aforementioned characteristic of the hydrostatic 
pressure loading, and then use the previous arguments on the 
relative magnitudes of the rotations wi, we obtain equations 
(13) and (18) as found in Kardomateas (1993a). 

Now, if we relax these assumptions and include the normal 
~train and stress terms, we obtain the following first boundary 
condition: 

[a;,(1 +e~,)+a~,e;,ll+ [T;a(1 +e~,)+a~aGe;a-w;)]m 

+ [T~(l + e~,) + a~ Ge~ + w~)] n 

= - p [e ;,l + Ge;e - w;) m + Ge~ + w;) n] 
(Sa) 

By comparison, the corresponding condition to the earlier elas­
ticity formulation of Kardomateas (1993a) is repeated here 

a;,l + «e - a~ew;)m + (T~ + a~w~)n = p(w;m - w~n) (Sb) 

In a similar fashion, the second boundary condition with 
normal strain and stress terms is written 

[T;e(l + e~e) + a~, Ge;e + w;)] l + [a~o(l + e~e) + a~ee;o]m 

+ [T~,(l + e~e) + a~ Ge~, -w;)] n= -p Ge;. + w:) l 

+ e~.m + Ge~, -w;) n] (6a) 

and by comparison, the corresponding second boundary con­
'iition in Kardomateas (1993a) is repeated here 

(T;. + a?,w;)l + a~am + (T~, - a~w;)n = -p(w;l - w;n) (6b) 

The main difference between (6a) and (6b) is the added 
normal strain E~. and normal stress O"~. terms. Another minor 

difference is that the strain terms e ij are no longer neglected 
in comparison with the rotations w;. 

Prebuckling State 

The problem under investigation is of a very long hollow 
cylinder rigidly fixed at its ends and deformed by uniformly 
distributed external pressure p. The axially symmetric distri­
bution of external forces produces stresses identical at all cross 
sections and dependent only on the radial coordinate r (gen­
eralized plane assumption). In this manner, the forces at the 
ends are distributed identically over both surfaces and reduce 
to equal and opposite resultant forces and moments. Let R I be 
the internal radius and R2 the external radius and set C = 
R IIR2• Lekhnitskii (1963) gave the stress field as follows: 

k- I k , () k+ I 
a~, = -~.!...- + pc - 2k cH' R2 

(7a)( )1 - c R, 1 - c r 
k-' k-I 

apr pc H' a = ----k - - ---kc (7b)ee 1 _ C 2k ( R ) 1 - C 2k 
2 

k-I 

a p r 
a", = (l _ c~aJJ (alJ + a2Jk) ( R )

2 

(7c) 

T?e =T~ = T~, = 0 (7d) 

Eq. (2) for the orthotropic constitutive behavior (where Co) 

are the stiffness constants) and the inverse relationship (where 
a,) are the compliance constants) are used, i.e. 

E" a'i a l 2 an 0 0 0 a" 
Ea. ai' an a2J 0 0 0 aea 
E", 

'Yo: 

a,) 

0 
a2) 

0 
a)) 

0 
0 

a 44 

0 
0 

0 
0 

au 

Te, 
(7e) 

'Y" 0 0 0 0 ass 0 T" 
'Y,. 0 0 0 0 0 a66 T,. 

Integration of the strain field, resulting by substituting (7a)­
(7d) into the strain-stress relationships (7e) through the linear 
strain-displacement relations, gives 

ua(r) = Dlprk + D2 pk-k; Va = Wa = 0 (8a) 

where 

a'la)) - a~J 
k= (8b) 

a 22a)) - a;) 

D, = -(l---C-~-k-R--~~--I [all + a l2k- :~: (an + a 2J k)] 

= (cllk + c,,)(1 - C~R~-I (8c) 

ck-'R~+' 
= -----'------:::­

(-cllk + c'2)(1 - c~ (8d) 

with D, and D 2 being found by integrating 

Accordingly, the prebuckling strains are written 

er;, = pk(D I r
k
-' - D2 r- k

-
l) (9a) 
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(9b) 

e~ = e~6 =e~ = e~l; = W~ ::: W~ = W~ = 0 (9c) 

Perturbed State 

In the perturbed position, we seek plane equilibrium modes 
as follows: 

u,(r, S) =A,,(r)cos nS; v,(r, S) = B,,(r)sin nS; w,(r, S) =0 
(10) 

The first-order strains are accordingly 

au, ,
e' =-=A (r)cosnS'

fT 11iJr , 

(lla) 

, 1 au, av, v, [B' ( B,,(r) + nA,,(r)]. S e ,a = - - + - - - = "r) - Sin n (lIb) 
r as ar r r 

, au, aw, 
e =-+-=0 

rz az ar 

(llc) 

and the first order rotations are written 

2w: =~ + !2 - ~ ~ = [B:,(r) + B"(r) + nA,,(r)] sin nS 
- ar r r as r 

(lId) 

au, aw, law, av,
2w' =- - -=0' 2w' =-- - -=0 (lIe) 

a az ar ' , r as az 

Substituting into (3a), we obtain the first equilibrium equation 
as follows: 

[C,,(1 + e~,) + cr~,]A,,(r)" 

C" 0 e'2 0 0 0' cr~, 0'] ,+ [ -(l + e,,) + -(e" - eaa) + clle" + - + cr" A"(r) 
r r r
 

C'2 O' Co2 0 cr~a(n2 + 1)
+ - e" - ---;- (1 + e aa) - ,[ r r" r-

coon' 0 ] (C'2 + c66)n 0 , 
- -,- (1 + e ,,) A,,(r) + (l + e ,,)B,,(r) 

r r 

C'2 O' CO2 0 C66 0 cr~a]+ 
[ 
-e" - ,(l + e ,,) -2"(1 + e,,) - 2-, nB,,(r) =0 
r r r r 

(12a) 

In a similar fashion, the second equilibrium equation [(4a)] 
becomes 

O' cr~, COb 0 O' ] ,+
[ 

cr" + ---; + -; (1 + e,,) + C66e,a B"(r) 

C66 0 cr~a Coo O' 
2 (I + e,,) + -2 + - e"[ r r r 

cnn 2 0 cr~6n 2]
+ ? (1 + ea.) + --;z B,,(r) 

- n(C'2 + Coo) (1 + e~.)A~(r) - n [C222 (I + e~a) 
r r 

C66 0 C66 0' cr~.]+ ? (1 + e,,) + -; e" + 2 7 A"(r) = 0 (l2b) 
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The first boundary condition [(Sa)] on the lateral surfaces m = 
n = 0, I = ::!: 1 becomes 

[CII(I + e~,) + cr~, + pj]A,,(R)' 

+ C\2 (1 + e~.)A,,(RJ') + cl2n (1 0.. + e ,,)B,,(Rj ) = 0 
r r (13a) 

and the second boundary condition [(6a)] becomes 

[c00(1 + e~a) + cr~, + pi]B"(R)' 

(l3b) 

where Pi =P for j = 2 (i.e., at the outer surface R2 ); and Pj = 
o for j =1 (i.e., at the inner surface R,). Therefore, we obtain 
two linear, homogeneous, ordinary differential equations of the 
second order for A,,(r) and B,,(r). Eqs. (12) and (l3) constitute 
an eigenvalue problem for differential equations with param­
eter P, which can be solved by standard numerical methods 
(two point boundary value problem). The relaxation method 
(Press et al. 1989) was used to obtain results that are discussed 
next. The minimum eigenvalue is obtained for n = 2. An 
equally spaced mesh of 241 points was used to derive the 
results as in the case without the normal terms, and the method 
is highly efficient with rapid convergence. 

RESULTS AND DISCUSSION 

Results were produced for the same configuration as the one 
in Kardomateas (1993a), namely, a circular cylinder of inner 
radius R, = I m with moduli in GN/m2 and Poisson's ratios 
used typically for a glass/epoxy material and listed below, 
where I is the radial (r), 2 is the circumferential (8), and 3 is 
the axial (z) direction: E, = 14.0, E2 =57.0, EJ = 14.0, G'2 = 
5.7, G2J =5.7, G3 , =5.0, V'2 =0.068, V2J =0.277, V 3 , =00400. 

Fig. I shows the critical pressure as a function of the ratio 
of outside versus inside radius R2 /R,. The elasticity solution 
with normal stress and strain terms included is compared with 
the elasticity solution in the earlier work of Kardomateas 
(1993a) and with the predictions of the classical shell theory. 
Table I shows the tabulated data. It is seen that the normal 
stress and strain terms reduce the critical load by about 1.3% 
for R2/R, = 1.05 and by 7% for R2/R, = 1.20 versus the earlier 
elasticity solution and by about 10% for R2/R, = 1.30. How­
ever, compared with the elasticity solution in Kardomateas 
(1993a), the classical shell theory showed a 20% increase in 
critical load for R2/R, = 1.20 and a 34% increase for R2 /R, = 
1.30; therefore, this effect is far more important. 

Table 2 shows the same data for the isotropic case with v 
= 0.3. It is seen that the normal stress and strain terms reduce 
the critical load by about 1% for Rz/R, = 1.05 and by about 
5% for R2 /R, = 1.20 versus the earlier elasticity solution and 
by about 7% for R2 / R, = 1.30 (i.e., the effect is less than in 
the orthotropic case). Again, compared with the elasticity so­
lution in Kardomateas (1993a), the classical shell theory 
showed a 12% increase in critical load for R2 /R, = 1.20 and 
an increase of about 18% for Rz/R, = 1.30; therefore, this 
effect is far more important than the normal terms effect, but 
all of these effects are less than in the orthotropic case. 

The direct expression for the critical pressure from classical 
shell theory is written 

E, 2 h J 

P - - (11 - 1) -- (l4a)
cuh - (1 - V23 vn ) 12R) 

where R = (R, + R2 )/2 = midsurface radius; and h = R2 - R, 
= shell thickness. The previous value can be found by using 
the Donnell nonlinear shell theory equations (Brush and Alm­
roth 1975) and seeking the buckled shapes in the form (l0) 
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TABLE 1. Elasticity with and without Normal Stress and 
Strain Terms-Orthotroplc Critical Pressure (GPa) (14b) 

R2 tR, 
(1 ) 

Elasticity 
without 
normal 
terms 

(2) 

Classical 
shell 

theory" 
(3) 

Elasticity 
with normal 

terms 
(4) 

With normal 
versus without 
normal terms 

(%) 
(5) 

1.05 
l.ll 
[.[59 
1.207 
1.255 
1.303 
1.352 
1.4 

0.001635 
0.01532 
0.04055 
0.07996 
0.1331 
0.1985 
0.2743 
0.3585 

0.001686 
0.01661 
0.046 [ 
0.09574 
0.1683 
0.2656 
0.3887 
0.5379 

0.001614 
0.01482 
0.03847 
0.07434 
0.1212 
0.1772 
0.2402 
0.3083 

-1.28 
-3.26 
-5.13 
-7.03 
-8.94 

-10.73 
-12.43 
-14.002 

"From Eq. ([4a). 

TABLE 2. ElastIcIty with and without Normal Stress and 
Strain Terms-Isotropic Critical Pressure (GPa) 

R2 tR, 
(1 ) 

Elasticity 
with 

normal 
terms 

(2) 

Classical 
shell 

theory" 
(3) 

Elasticity 
without 
normal 
terms 

(4) 

With normal 
versus without 
normal terms 

(%) 
(5) 

1.05 
l.ll 
1.159 
1.207 
1.255 
1.303 
1.352 
1.4 

0.001752 
0.01647 
0.044 
0.08790 
0.1487 
0.2257 
0.3179 
0.4237 

0.001818 
0.01791 
0.04971 
0.[032 
0.1815 
0.2864 
0.4191 
0.58 

0.001772 
0.01691 
0.04574 
0.09254 
0.1585 
0.2438 
0.3476 
0.4691 

-1.13 
-2.60 
-3.80 
-5.01 
-6.18 
-7.42 
-8.54 
-9.68 

'From Eq. (14a). 

where An(r) ::: An (i.e., it is now a constant instead of function 
f r) and Bn(r) ::: Bn + (r - R)~ with Bn being a constant (i.e., 

.( admits a linear variation through the thickness). Because ~ 

::: (v, - u,.e)/R, the latter can also be written in the form 
Bn(r) ::: Bn + (r - R)(Bn + n)/R. Consequently, we obtain the 
following shell theory buckling equations: 

(l4c) 

Substituting the displacements from (10) and using the pre­
vious expressions for An(r) and Bn(r) arguments results in the 
eigenvalue (14a) and the "eigenvectors" given by 

A ::: l' B::: -(1 + ~ n2 )/[n (1 + ~)] (14d)
n 'n 12R 2 12R 2 

The comparison of our elasticity solution was performed 
with the Donnell shell theory. It has been shown (Danielson 
and Simmonds 1969) that the Donnell shell theory can pro­
duce, in some instances, inaccurate results (such as for long 
tube behavior) as opposed to the more elaborate Flligge theory 
that provides more accurate predictions. However, for the 
problem under consideration, due to the assumed 2D buckling 
modes (i.e., no z component of the displacement field and no 
z-dependence of the r and e displacement components), the 
Flligge and Donnell equations would give the same critical 
load. Indeed, the buckling equations for the Flligge shell the­
ory [see e.g., SimmondS (1966)] would give (14b) without the 
term (h 21l2R 2 )(u,eee - V"ee) and (l4c) with the first term being 
(h'tI2R 2 )(ul.eeee + 2u,.ee + u,) instead of (h 21l2R 2 )(ul.eeae ­
vl.eee). Substitution of the buckling modes [(10)] gives the 
same critical load [(I4a)] as the Donnell shell theory. 

Next, we are going to compare with the critical pressure 
from an FOSD theory because this is expected to improve the 
shell theory results, To do so, let us first derive the formula 

The critical pressure based on an FOSD shell fonnulation. 

We are refening to a coordinate system z, e, and r, in which 
z and e are in the axial and circumferential directions and r is 
in the (radial) direction of the outward normal to the middle 
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surface. The corresponding displacements at the middle sur­
face are denoted by w, v, and u, and the rotation of the normal 
to the middle surface in the r8-plane is denoted by 1jJ. Then 
the nonlinear strain displacement relations are written 

V.a + U 1 2 U a£----+-u· (l5a)0- R 2R2 .0, "ira = Iji + R 
and the bending strain (or curvature) relationship is written 

Iji.aIi (l5b)Ka = 

All other strains and curvatures are zero, i.e. 

(l5e) 

Notice that based on the Timoshenko-Mindlin kinematic hy­
pothesis, the displacement field ii, ii, and w at an arbitrary point 
is represented by 

ii(r, \l) =u(8); ii(r, 8) = v(8) + (r -;-- R)Iji(8) (l5d,e) 

In these equations, a comma denotes differentiation with re­
spect to the corresponding coordinate; £0 = inplane strain; and 
"ira =transverse shear strain. Notice that for the classical shell 
theory, IjJ = -u,JR, and therefore "fra = O. 

In the FOSD theory considered, the relationship between 
force resultants and moment resultants and membrane strains 
and bending strains is written 

(16a) 

(l6b) 

where 

Cn 
hEa= ---'--­

I - V23Vn' 
C66 = hG~' 

'0' 

h2 

D = ­ c 
'J 12 'J 

(16e) 

For the shear correction factor, results will be presented for 
the usual value of k; = 5/6. A discussion of various methods 
for determining these factors can be found in Dong and Nelson 
(1972) and Whitney (1973). 

The governing equations of equilibrium for the shear de­
formable ring can be derived from the principle of virtual work 
and can be directly extracted from these for the shell [e.g., see 
Kardomateas (1997)]. These are written as follows: 

No.a - p(v - u o) = 0 (l7a) 

Me.a - RQ,a =0 (l7b) 

I 
Q,.a - N. + R(Nau.a)o - p(v.• + u) - pR =0 (l7e) 

In the prebuckling state, the axially symmetric distribution 
of external forces produces stresses identical at all cross sec­
tions. For external pressure 

We shall also use the superscript e to refer to the critical state 
(i.e., N~o = -PeR). 

Substituting the displacement field in the perturbed form 
[( 1)] into the equilibrium equations, retaining the first-order 
terms, then using the relations that express the first-order re­
sultant forces and moments in terms of the first-order strains, 
and subsequently using the strain-displacement relations gives 
the buckling equations in the form 

Cn (Cn)R VI.•• - Pc V ' + R + Pc U,.a = 0 (l9a) 
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(l9b) 

Eqs. (2la) and (2lb) give 

(C'2 )/(C2,n2 )Bn = -Ann R + Pc R + Pc 

(C22 ) k 2 C) U' .•a 2- R + Pc (VI,. + U,) + (N C 

00 + , 66 R + k,C66 ljil.a = 0 

(lge) 

The first-order displacement field is set in the form 

u,(8) =An cos n8; v,(8) =Bn sin n8; 1ji,(8) =Cn sin n8 (20) 

Substitution results in the following three equations for An' En' 
and C: 

(2Ia) 

(21b) 

(2Ie) 

(22a) 

(22b) 

Substituting into (2le) gives the following quadratic charac­
teristic equation for Pc: 

ap~ + r3pc + "i = 0 (23a) 

where 

a =2n2 
- I (23b) 

(.l Cn 4 2 
I-' = - (n + n ­

R 

(23d) 

Table 3 gives the results from a comparison of the improved 
elasticity solution with the FOSD and with the classical shell 
formulations for thick construction. It is seen that the FOSD 
provides an improvement versus the classical shell theory but 
not to the extent of covering the overestimation versus the 
elasticity prediction. However, when the more complete prob­
lem of cylindrical shells of finite length under external pres­
sure, rather than the simplified ring approximation, was ana­
lyzed in Kardomateas (1996), the FOSD results of Simitses et 
al. (1993) were found to be adequate for the moderately thick 
(R,/R, no more than I.lO) boron/epoxy shells considered. 

TABLE 3. First-Order Shear (k~ = 5/6)-Orthotropic Critical 
Pressure (GPa) for Thick Shells 

Ro/R, 
(1) 

Elasticity 
with 

normal 
terms 

(2) 

Classical 
shell 

theory' 
(3) 

FOSO 
shell· 

(4) 

Elasticity with 
normal terms 
versus shell 

(%) 
(5) 

Elasticity with 
normal terms 
versus FOSO 

(%) 
(6) 

1207 
1.255 
1.303 
1.352 
1.4 

0.07434 
0.1212 
0.1772 
0.2402 
0.3083 

0.09574 
0.1683 
0.2656 
0.3887 
0.5379 

0.09392 
0.1561 
0.2321 
0.3191 
0.4146 

-22.35 
-27.99 
-33.28 
-38.20 
-42.68 

-20.85 
-22.36 
-23.65 
-24.73 
-25.64 

'From Eq. (140). 
'From Eq. (23). 



From the results presented previously, it can be concluded 
that the effect of including the nonnal strain and nonnal stress 
tenns, and thus having an improved but more complicated 
elasticity fonnulation, is to render the critical load further 
lower. However, this reduction (versus the elasticity solution 
without these tenns) is small compared to the large reduction 
in critical load between the elasticity and the classical shell 
theory predictions for thick construction. 

CONCLUSIONS 

This paper presented an improved elasticity solution to the 
problem of buckling of orthotropic cylindrical shells subjected 
to external pressure. The generalized plane defonnation case 
is studied (equivalent to a ring approximation). The main im­
provement versus the earlier elasticity solution is that the pres­
ent solution includes the tenns with the prebuckling nonnal 
strains and stresses as coefficients, which were neglected in 
the buckling equations of the earlier work. The results show 
that the effect of including these nonnal strains and stresses 
further decreases the critical load, albeit modestly. Moreover, 
a closed-fonn fonnula is derived in this paper for the critical 
pressure based on an FOSD theory. The elasticity critical load 
is still found to be lower than the FOSD prediction. 
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