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Abstract. An approach based on the continuous dislocation technique is formulated and used to obtain the Mode
I and II stress intensity factors in a fully anisotropic infinite strip with a central crack. First, the elastic solution of a
single dislocation in an anisotropic infinite strip is obtained from that of a dislocation in an anisotropic half plane,
by applying an array of dislocations along the boundary of the infinite strip, which is supposed to be traction-free.
The dislocation densities of the dislocation array are determined in such a way that the traction forces generated by
the dislocation array cancel the residual tractions along the boundary due to the single dislocation in the half plane.
The stress field of a single dislocation in the infinite strip is thus a superposition of that of the single dislocation and
the dislocation array in the half plane. Subsequently, the elastic solution is applied to calculate the stress intensity
factors for a center crack in an anisotropic strip. Crack length and material anisotropy effects are discussed in
detail.
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1. Introduction

The problem of determining the stress intensity factors of cracks in anisotropic materials is
of considerable importance in the design of safe structures. This is due to the ever increasing
usage of anisotropic materials in modern technology, especially in the aerospace industry and
electronic industry, in which composite materials and bimaterials are commonly used.

Many approaches have been developed to calculate mixed-mode stress intensity factors
in the past decades. A detailed review of stress intensity factor calculation can be found in
Cartwright and Rooke (1975). One of the most effective methods is the distributed (also called
continuous) dislocation technique, which is a semi-analytical technique. The basic idea of the
continuous dislocation method is to model the crack as an array of dislocations along the
crack lines in otherwise perfect bodies and determine the dislocation densities by satisfying
the crack surface traction-free conditions. The crack tip stress intensity factors can be then
calculated from the dislocation densities.

In order to apply the continuous dislocation technique to a solid body, the proper disloca-
tion elastic field in the crack domain must be available. This is why the continuous dislocation
approach is most suitable to determining stress intensity factors for cracks of relatively small
dimensions, because the number of fundamental solutions available for the various kinds of
dislocations is limited to simple geometries such as infinite space, half plane, near a circular
inclusion, etc. The elastic solution of a dislocation in isotropic infinite plane or half plane
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can be easily found in many publications such as in Hill et al. (1996). As far as anisotropy,
Lee (1990) proposed an analytic method to calculate the elastic fields of a dislocation in an
anisotropic infinite plane and half plane.

However, the analytic solution of a dislocation in either isotropic or anisotropic infinite
strips (i.e., one dimension of the domain being finite) is not available. Civelek (1985) pre-
sented a numerical method by superposing the infinite plane field with an additional elastic
field, expressed via an Airy stress function with Fourier transformation and the Fourier series
determined from the residual stresses along the boundaries. He also applied this method to
several typical cases of practical importance involving a single or two cracks. Suo (1990) and
Suo and Hutchinson (1990) extended this method to orthotropic materials and calculated the
mixed-mode stress intensity factors for an infinite strip with semi-infinite cracks subjected
to edge bending. In an earlier study, Delale et al. (1979) studied the problem of an inclined
crack in an orthotropic strip, in which the plane of the crack must be a plane of material
orthotropy. Georgiadis and Papadopoulos (1987) determined the stress intensity factor for an
orthotropic infinite strip with a semi-infinite crack located mid-distance of the strip faces, by
using Fourier transforms in combination with the Wiener-Hopf technique. A solution pro-
cedure that is based on a synthesis of Stroh’s formalism for anisotropic elasticity and the
Fourier transformation was presented by Wu and Chiu (1995) to analyze the elastic fields of
a dislocation in an anisotropic strip. In their paper, the elastic field of interest is divided into
an unbounded medium and a regular part. Interactive forces between two like dislocations in
the central plane of the strip in these materials are also calculated to study the influence of the
boundaries. A surface dislocation model was proposed by Jagannagham and Marcinkowski
(1979) to calculate the stress fields of a finite body subjected to either an applied stress or an
internal stress. However, neither of these two papers went further to explore the calculation of
stress intensity factors. In a more recent study, Qian and Sun (1997) obtained stress intensity
factors for interface cracks between two monoclinic media, by either calculating the finite-
extension strain energy release rates or utilizing the relationships between the crack surface
displacements and the stress intensity factors, both carried out with a finite element analysis.

In this paper, the elastic solution of a dislocation in an anisotropic infinite strip is derived
by assigning an array of dislocations along a line in the half plane which is supposed to be
the boundary of the infinite strip. The dislocation densities of these added dislocations are
determined by satisfying the traction-free boundary conditions. The stress fields of a single
dislocation in the anisotropic strip is thus the combination of that of the single dislocation and
those of the dislocations distributed along the boundary. Thereafter, the elastic solution is em-
ployed to calculate the mixed-mode stress intensity factors of a center crack in an anisotropic
infinite strip. Effects of both the geometry and the material anisotropy on the stress intensity
factors are investigated.

2. Formulation

2.1. ELASTIC SOLUTION OF A DISLOCATION IN AN ANISOTROPIC INFINITE STRIP

As shown in Fig. 1, the geometry of a dislocation in an infinite strip can be decomposed
into two geometries. The first one is a half plane with a single dislocation located at point
(x0, y0), for which the elastic solution of the dislocation can be found in Lee (1990) and is
summarized in Appendix A. In short, the stress components at point(x, y) due to a dislocation
B = Bx + iBy located at(x0, y0) can be expressed as:
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Figure 1. Single dislocation in an infinite strip as a superposition of a single dislocation in a half plane and an
array of dislocations at the boundary of the strip.

σij (x, y) = Bx(x0, y0)Gxij (x, y, x0, y0)+ By(x0, y0)Gyij (x, y, x0, y0), (1)

whereij = xx, yy, xy andGxij (x, y, x0, y0) are the stress components at(x, y) due to a unit
dislocationBx = 1 at (x0, y0) andGyij (x, y, x0, y0) are the stress components at(x, y) due
to a unit dislocationBy = 1 at(x0, y0).

Accordingly, the traction forces along the dashed line, which is supposed to be the bound-
ary of the infinite strip, due to the single dislocationB(x0, y0) in the half plane are:

σ (s)yy (x, h) = Bx(x0, y0)Gxyy(x, h, x0, y0)+ By(x0, y0)Gyyy(x, h, x0, y0), (2a)

and

σ (s)xy (x, h) = Bx(x0, y0)Gxxy(x, h, x0, y0)+ By(x0, y0)Gyxy(x, h, x0, y0). (2b)

The second geometry is a half plane with an array of dislocations along the dashed line.
The dislocation densities of the dislocationsb(x, h) along the boundary are determined in such
a way that the traction forces generated by these dislocations along the dashed lineσ (a)yy (x, h)

andσ (a)xy (x, h) are the opposite ofσ (s)yy (x, h) andσ (s)xy (x, h). Thus the traction-free boundary
conditions of the infinite strip are satisfied after superposing these two geometries together.
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Suppose that the dislocation arrayb(t, h) = bx(t, h) + iby(t, h) are distributed from−∞ to
∞ alongy = h, then the traction forces along the dashed line due to the dislocation array are:

σ (a)yy (x, h) =
∫ ∞
−∞
[bx(t, h)Gxyy(x, h, t, h)+

+by(t, h)Gyyy(x, h, t, h)] dt = −σ (s)yy (x, h),
(3a)

σ (a)xy (x, h) =
∫ ∞
−∞
[bx(t, h)Gxxy(x, h, t, h)+ by(t, h)Gyxy(x, h, t, h)] dt = −σ (s)xy (x, h).

(3b)

whereσ (s)ij are defined in Equation (2).
The functionsGxyy(x, h, t, h),Gyyy(x, h, t, h),Gxxy(x, h, t, h) andGyxy(x, h, t, h) are

singular atx = t . Since the single dislocation is in self- equilibrium, the traction forces
σ (s)yy (x, h) and σ (s)xy (x, h) vanish ast → −∞,+∞. As a result, the dislocation densities
bx(t, h) andby(t, h) go to zero ast → −∞,+∞. Therefore, for calculation purposes, in the
singular integral Equations (3) we can ignore the dislocations located atx > d andx < −d,
whered is a value large enough compared toh. A value ofd = 100h was found to be more
than adequate for this purpose. Thus, Equations (3) become:

σ (a)yy (x, h) =
∫ d

−d
[bx(t, h)Gxyy(x, h, t, h) + by(t, h)Gyyy(x, h, t, h)] dt = −σ (s)yy (x, h),

(4a)

σ (a)xy (x, h) =
∫ d

−d
[bx(t, h)Gxxy(x, h, t, h)+ by(t, h)Gyxy(x, h, t, h)] dt = −σ (s)xy (x, h).

(4b)

Now, normalize Equation (4) as following:

t̃ = t

d
and x̃ = x

d
,

so that these equations can be written in the form:

σ
(a)
ij = πd

[
1
π

∫ 1
−1 bx(t̃, h)Gxij (x, h, t, h) + by(t̃, h)Gyij (x, h, t, h)

]
dt̃ = −σ (s)ij (x, h),

ij = yy, xy. (5)

We can actually enforce thatb(t̃ , h) = bx(t̃, h) + iby(t̃, h) be zero at̃t = −1 and t̃ =
1 (t = −d andt = d) assuming thatd is large enough. This can be built into the solution by
expressingb(t̃, h) as the product of a fundamental functionW(t̃) and an unknown function
b̃(t̃ , h) (Hills et al., 1996):

b(t̃) = W(t̃)b̃(t̃, h); W(t̃) =
√

1− t̃2. (6)

Substituting Equation (6) into Equation (5), the numerical form of the singular integral
equations can be expressed as:
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πd
[∑N

m=1Wmb̃x(t̃m, h)Gxij (xk, h, tm, h)+∑N
m=1Wmb̃y(t̃m, h)Gyij (xk, h, tm, h)

]
=

−σ (s)ij (xk, h), ij = yy, xy, k = 1, . . . , N + 1,

(7)

wheret̃m are the N discrete integral points andx̃k are the collocation points andWm are the
weight coefficients:

t̃m = cos

(
πm

N + 1

)
; x̃k = cos

[
π(2k − 1)

2(N + 1)

]
; Wm = 1− t̃2m

N + 1
. (8)

Equation (7) allows us to determine the dislocation densitiesb(t̃m, h) of the dislocation
array along the dashed line, which cancel out the residual traction forces due to a single dislo-
cationB(x0, y0) in the first geometry. After the dislocation densitiesb(t̃m, h) are known, the
stress components at every point(x, y) in the second geometry can be calculated as follows:

σ
(a)
ij (x, y) = πd

[
N∑
m=1

Wmb̃x(t̃m, h)Gxij (x, y, tm, h)+
N∑
m=1

Wmb̃y(t̃m, h)Gyij (x, y, tm, h)

]
,

(9)

whereij = xx, yy andxy.
Obviously, the dislocation densitiesb(tm, h) along the dashed line are related to the sin-

gle dislocationB(x0, y0) in the half plane. Denoting the dislocation densitiesb(t̃m, h) as
b(x)(t̃m, h) = b(x)x (t̃m, h)+ib(x)y (t̃m, h) for a single dislocationB(x0, y0) = 1 and asb(y)(t̃m, h) =
b
(y)
x (t̃m, h)+ ib(y)y (t̃m, h) for a dislocationB(x0, y0) = i, and superposing the elastic fields of

the single dislocation and the dislocation array alongy = h, we have:

G̃xij (x, y, x0, y0) = Gxij (x, y, x0, y0)+

+πd
[

N∑
m=1

Wmb̃
(x)
x (t̃m, h)Gxij (x, y, tm, h)+

N∑
m=1

Wmb̃
(x)
y (t̃m, h)Gyij (x, y, tm, h)

]
,

(10a)

and

G̃yij (x, y, x0, y0) = Gyij (x, y, x0, y0)+

+πd
[

N∑
m=1

Wmb̃
(y)
x (t̃m, h)Gxij (x, y, tm, h)+

N∑
m=1

Wmb̃
(y)
y (t̃m, h)Gyij (x, y, tm, h)

]
,

(10b)

whereij = xx, yy andxy.
Physically,G̃xij (x, y) in Equation (10a) represent the stresses at(x, y) due to a dislocation

Bx = 1 at (x0, y0) in the infinite strip; Similarly,G̃yij (x, y) in Equation (10b) represent the
stresses at(x, y) due to a dislocationBy = 1 at (x0, y0) in the infinite strip. Because the
elastic fields of the dislocation are linear, the stress components at(x, y) due to a dislocation
B(x0, y0) = Bx(x0, y0)+ iBy(x0, y0) in the infinite strip are:

σij (x, y) = Bx(x0, y0)G̃xij (x, y, x0, y0)+ By(x0, y0)G̃yij (x, y, x0, y0). (11)
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Figure 2. The continuous dislocation approach in an infinite strip. The array of dislocationsB = Bx + iBy is
determined so that the traction-free conditions at the crack site are satisfied.

Next, the elastic solution of the dislocation in an anistropic infinite strip is applied to an
anisotropic strip with a central crack perpendicular to the boundary of the thin strip.

2.2. APPLICATION TO A CENTRAL CRACK IN AN INFINITE ANISOTROPIC STRIP

Now, let’s consider an infinite strip with a central crack subjected to uniform tension. The
crack of length 2a is aligned with they axis and the middle point of the crack is located at
y = h/2. Thus, the crack tips are located aty = h/2+ a andy = h/2− a, respectively.
Applying the routine continuous dislocation method, i.e., replacing the crack in the infinite
strip with a series of dislocations (Fig. 2), the tractions at a point(0, y) along the crack surface
due to the dislocations are:

σ (d)xx (0, y) =
∫ h/2+a

h/2−a

[
Bx(0, t)G̃xxx(0, y,0, t) + By(0, t)G̃yxx(0, y,0, t)

]
dt, (12a)

and

σ (d)xy (0, y) =
∫ h/2+a

h/2−a

[
Bx(0, t)G̃xxy(0, y,0, t) + By(0, t)G̃yxy(0, y,0, t)

]
dt. (12b)

To satisfy the crack surface traction-free condition, the tractionsσ (d)xx andσ (d)xy in Equa-
tions (12) should cancel out the tractions along the crack face due to the external force,σxx0(y)

andσxy0(y). In our case, the thin strip is subjected to uniform tensile loadσ , i.e.σxx0(y) = σ
andσxy0(y) = 0. To satisfy the crack surface tranction free boundary conditions, we have:



Stress intensity factors in an anisotropic strip373

σ (d)xx (0, y) = −σ and σ (d)xy (0, y) = 0. (13)

Substituting Equation (12) into Equation (13) gives two singular integral equations, which
can be solved by Gaussian quadrature. First, Equations (12) are normalized through the sub-
stitution:

ȳ = y − h/2
a

, t̄ = t − h/2
a

,

so that Equation (13) can be written in the form:

σ
(d)
ij (0, y) = πa

[
1

π

∫ 1

−1
Bx(0, t̄ )G̃xij (0, y,0, t) dt̄+

+ 1

π

∫ 1

−1
By(0, t̄ )G̃yij (0, y,0, t) dt̄

]
= −σij0(y) ij = xx, xy.

(14)

Now, the form ofBx(t̄) andBy(t̄) must be singular at the crack tipst̄ = −1,1 (t = h/2−
a, h/2+ a) in order to preserve the correct asymptotic form of stresses and displacements.
Note that it has been proven by Stroh (1958) that the crack tip stresses have a singularity of
ther−1/2 type in anisotropic materials, just as in the isotropic case. This may be built into the
solution by expressingB(t̄) as the product of a fundamental functionW(t̄) and an unknown
regular functionB̃(t̄ ) (Hills et al., 1996):

B(t̄) = W(t̄)B̃(t̄); W(t̄) = 1√
1− t̄2 . (15)

Substituting Equation (15) into Equation (14), the numerical form of the singular integral
equations can be expressed as:

πa

{
N∑
m=1

WmB̃x(0, t̄m)G̃xxx(0, yk,0, tm)+
N∑
m=1

WmB̃y(0, t̄m)G̃yxx(0, yk,0, tm)

}
= −σ,

k = 1 . . . N − 1, (16a)

wheret̄m are theN discrete integration points and̄yk are theN −1 collocation points andWm

are weight coefficients:

t̄m = cos
π(2m− 1)

2N
; ȳk = cos

πk

N
; Wm = 1

N
.

Also, yk = aȳk + h/2 andtm = at̄m + h/2. Similarly:

πa

{
N∑
m=1

WmB̃x(0, t̄m)G̃xxy(0, yk,0, tm)+
N∑
m=1

WmB̃y(0, t̄m)G̃yxy(0, yk,0, tm)

}
= 0,

k = 1 . . . N − 1. (16b)

Although only the structure subjected to uniform tension is considered in this paper, it
should be mentioned that the external load can be arbitrary as long as the elastic solution of
the structure subjected to such external loading is known.

In addition, the requirement that the crack surfaces physically come together at both ends
imposes two side conditions:
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h/2−a
Bx(0, t) dt = a

∫ 1

−1
Bx(0, t̄ ) dt̄ = 0, (17a)

∫ h/2+a

h/2−a
By(0, t) dt = a

∫ 1

−1
By(0, t̄ ) dt̄ = 0. (17b)

The conditions (17) arise from the fact that the dislocation density is related to the dis-
placements as:

B(0, t) dt = [Bx(0, t) ds + iBy(0, t)
]

dt = d [u+(t)− u−(t)]+ id [v+(t)− v−(t)] ,
where+ denotes the upper surface and− the lower surface of the crack

The discrete forms of equation (17a) and (17b) are:

N∑
m=1

WmB̃x(0, t̄m) = 0;
N∑
m=1

WmB̃y(0, t̄m) = 0. (18)

Now the values ofB̃(0, t̄m) = B̃x(0, t̄m) + iB̃y(0, t̄m) can be solved at the discrete set of
pointst̄m. The system of 2N linear equations for the determination ofB̃x(0, t̄m) andB̃y(0, t̄m)
are the Equations (16) and (18).

Of major significance are the values of the dislocation densities at the crack tips,B̃(+1)
andB̃(−1), as they are directly related to the stress intensity factors. The value ofB̃(+1) and
B̃(−1) can be obtained from Krenk’s interpolation formulae (Hills et al., 1996):

B̃(+1) = ME

N∑
m=1

BEmB̃(t̄m), (19a)

B̃(−1) = ME

N∑
m=1

BEmB̃(t̄N+1−m), (19b)

where

ME = 1

N
, and BEm = sin

[
π(2m− 1)(2N − 1)

4N

]/
sin

[
π(2m− 1)

4N

]
.

The stress intensity factors at the crack tipy = h/2+ a, are defined as:

(KI + iKII ) |h/2+a= lim
y→h/2+a

{√2π(h/2+ a − y)[σxx(y)+ iτxy(y)]x=0}. (20a)

Using relations for the stresses in terms of the complex potentials as in (A3), gives

σxx(y)+ iσxy(y) |x=0=
∑
j=1,2

∫ h/2+a

h/2−a

[
(µ2

j − iµj )φ′j (y, ξ)+ (µ̄2
j − iµ̄j )φ̄′j (y, ξ)

]
dξ.

(20b)

Only the singular parts of the stress potential contribute, Therefore, the first term in (20b)
gives

(µ1− i) lim
y→h/2+a

√
2π(h/2+ a − y)

∫ h/2+a

h/2−a

[
A11

b(ξ)

y − ξ + A12
b̄(ξ )

y − ξ
]

dξ, (20c)
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and with the substitutiont = (y − h/2)/a, ξ̄ = (ξ − h/2)/a, andb(t) = B(t)/√1− t2, it
gives

(µ1− i) lim
t→1

√
2πa(1− t)

[
A11

∫ +1

−1

B(ξ̄ )

t − ξ̄ dξ̄ + A12

∫ +1

−1

B(ξ̄)

t − ξ̄ dξ̄
]
=

(µ1 − i) lim
t→1

√
2πa(1− t)π

[
A11

B(t)√
1− t2 + A12

B(t)√
1− t2

]
=

(µ1 − i)π
√
πa

[
A11B(+1)+ A12B(+1)

]
.

(20d)

A similar contribution exists from theµ2 term (second term of 20b).
Therefore, the stress intensity factors aty = h/2 + a, can be related to the dislocation

densities from the following expression:

(KI + iKII ) |h/2+a= π
√
πa{[(µ1− i)A11+ (µ2− i)A21+ (µ̄1− i)Ā12+

+(µ̄2− i)Ā22]B(+1)+ [(µ1 − i)A12+ (µ2− i)A22+ (µ̄1− i)Ā11+ (µ̄2− i)Ā21]B(+1)},
(21a)

whereA11, A12, A21, A22 are defined in Appendix A andB(+1) is given in (19a). Notice that
B(+1) is the complex conjugate ofB(+1).

Similarly, the stress intensity factors at the other crack tip,y = h/2− a, are:

(KI + iKII ) |h/2−a= −π
√
πa{[(µ1− i)A11+ (µ2− i)A21+ (µ̄1− i)Ā12+

+(µ̄2− i)Ā22]B(−1)+ [(µ1 − i)A12+ (µ2− i)A22+ (µ̄1− i)Ā11+ (µ̄2− i)Ā21]B(−1)}.
(21b)

3. Discussion of Results

The formulation described above can be easily implemented numerically. First, let us compare
the results of this approach with some examples in the literature for isotropic material. Readily
available formulas exist in Tada et al. (1985).

The mode I stress intensity factor for a central crack of length 2a in a strip of widthh,
under uniform tension in the direction normal to the crack, is expressed as:

KI = Fσ√πa; F = 1− 0.5α + 0.326α2

√
1− α , (22)

whereα = 2a/h is the crack length ratio. Fig. 3 compares the values ofF for different crack
length ratios, obtained by the present approach (discrete data points), with those obtained by
applying the Tada et al. (1985) formula, Equation (22). The comparison indicates an excellent
agreement. It should be mentioned that the isotropic solutions were calculated from the present
fully anisotropic formulation by setting the complex parametersµ1 = 1.0001i andµ2 =
0.9999i.
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Figure 3. Mode I stress intensity factor parameter,F , in KI = Fσ√πa, for an isotropic, centrally cracked strip
under uniform tension,σ . The line is the Tada et al. (1985) relationship for an isotropic crack and the discrete data
points are from the present anisotropic formulation when taken at the limit of isotropy.

Table 1. Comparison between the present method
and the method presented by Delale et al. (1979) for
an orthotropic Thin Strip

α = 2a
h

Present Delale et al. (1979)

K̄I K̄II K̄I K̄II

0.2 1.0177 0 1.018 0

0.4 1.0807 0 1.081 0

0.6 1.2260 0 1.226 0

0.8 1.6231 0 1.624 0

0.9 2.2454 0 2.249 0

For orthotropic thin strip, an example given by Delale et al. (1979) is revisited. In their
study, the transversal direction of the laminate and the crack are parallel and are at an an-
gle π − θ with the thin strip boundary. Whenθ = 0, the thin strip is orthotropic with
fiber orientation align withx axis. Thus, the crack is perpendicular to the thin strip bound-
ary. A boron-epoxy composite sheet with the following material constants is considered:
E11 = 170.65Gpa, E22 = 55.6Gpa, G12 = 4.83Gpa, andµ12 = 0.1114. The results
calculated from present approach are compared with those of Delale et al. (1979). Again we
achieved excellent agreement between these two methods. The data for Delale et al. (1979)
are taken from Table 1 in their paper withθ = 0. K̄I andK̄II are normalized stress intensity
factors. The definition ofKI andKII differs by a factor of

√
π between this two papers,̄KI =

(KI )/(σm
√
c) andK̄II = (KII )/(σm√c) in Delale et al. (1979), whilēKI = (KI )/(σ√πa)

andK̄II = (KII )/(σ√πa) in this paper.c anda are the crack half length.
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Figure 4. The effect of anisotropy on the mode I stress intensity factor of a center crack in a strip under uniform
tension for a unidirectional graphite/epoxy with fiber orientation,θ , measured from the direction of the applied
load. The stress intensity factor,KI , is normalized with the corresponding stress intensity factor of an isotropic,
infinite plate,σ

√
πa.

The effect of anisotropy is shown in Figs. 4 and 5. Again, a central crack of length 2a in
an infinite strip of widthh under uniformly distributed stress,σ , perpendicular to the crack,
is studied. Typical data for graphite/epoxy were used, i.e., moduli in GPa:EL = 130, ET =
10.5,GLT = 6, and Poisson’s ratioµLT = 0.28, whereL andT are the directions along and
perpendicular to the fibers, respectively. A unidirectional construction was considered with
the fiber orientation angle,θ , varying from 0 to 90 deg. The orientation angleθ is measured
from thex direction, i.e.,θ = 00 is when the crack is perpendicular to the fibers andθ = 900

is when the crack is parallel with the fibers. Obviously, the limits ofθ = 00 and 900 are the
orthotropic cases. As shown in Fig. 4, the effect of anisotropy on the mode I stress intensity
factors is seen to be significant between 30 and 40 deg and depends also strongly on the
relative crack length̃a = 2a/h, being larger for cracks of relative larger length. The mode
mixity ψ in Fig. 5 is defined as

ψ = tan−1

(
KII

KI

)
, (23)

and expresses the relative amounts of mode I and mode II components. A pure mode I state
corresponds toψ = 0 degrees and a pure mode II state corresponds toψ = ±90 degrees. As
expected, the mode II stress intensity factors are zero for orthotropic materials. The effect of
anisotropy on the mode mixity is dependent on both the fiber orientation and the relative crack
length. The fiber angle at which the mode mixity is maximum shifts to larger values as the
relative crack length increases.
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Figure 5. The effect of anisotropy on the mode mixity,ψ , of a center crack in a strip under uniform tension for a
unidirectional graphite/epoxy with fiber orientation,θ , measured from the direction of the applied load. The zero
degrees correspond to pure mode I. A pure mode II case would give 90 deg.
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Appendix. A dislocation in an anisotropic half plane

Let us consider a state of plane strain, i.e.,εzz = γyz = γxz = 0. In this case, the stress-strain
relations for the anisotropic body are (Lekhnitskii, 1963):

εxx

εyy

εzz

γxy


=



α11 α12 α13 α16

α12 α22 α23 α26

α13 α23 α33 α26

α16 α26 α36 α66





σxx

σyy

σzz

τxy


, (A1a)

whereαij are the compliance constants (we have used the notation 1≡ x,2 ≡ y,3 ≡ z,6 ≡
xy).

Using the condition of plane strain, which requires thatεzz = 0, allows elimination ofσzz,
i.e.

σzz = − 1

α33
(α13σxx + α23σyy). (A1b)

The Equations (1a) can then be written in the form
εxx

εyy

γxy

 =

β11 β12 β16

β12 β22 β26

β16 β26 β66



σxx

σyy

τxy

 , (A1c)

where

βij = αij − αi3αj3

α33
(i, j = 1,2,6). (A1d)

Problems of this type can be formulated in terms of two complex analytic functionsφk(zk)

(k = 1,2) of the complex variableszk = x +µky, whereµk, µ̄k, k = 1,2 are the roots of the
algebraic equation:

β11µ
4− 2β16µ

3+ (2β12+ β66)µ
2− 2β26µ+ β22 = 0. (A2)

It was proven by Lekhnitskii (1963) that these rootsµ1, µ2, µ̄1, µ̄2 are either complex or
purely imaginary, i.e., Equation (A2) cannot have real roots. Here,µ1 andµ2 are chosen to be
the ones with positive imaginary parts.

The stress and displacement components can be expressed in terms of8k(zk) as (Lekhnit-
skii, 1963):
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σxx = 2Re[µ2
1φ
′
1(z1)+ µ2

2φ
′
2(z2)], (A3a)

σyy = 2Re[φ′1(z1)+ φ′2(z2)], (A3b)

τxy = −2Re[µ1φ
′
1(z1)+ µ2φ

′
2(z2)]. (A3c)

Now, the complex stress potentials at a pointz = x + iy due to a single dislocation at
z0 = x0 + iy0 in an anisotropic half plane are given by Lee (1990). Only the results are
presented here.

The derivatives of the complex stress potentials atz due to a dislocation atz0, are given as:

φ′1(z1, z0) = A1

z1− z10
+ 1

1

[
(γ̄1γ2− δ̄1δ2)

Ā1

z1− z̄10
+ (γ2γ̄2− δ2δ̄2)

Ā2

z1− z̄20

]
, (A4a)

φ′2(z2, z0) = A2

z2− z20
− 1

1

[
(γ1γ̄1− δ1δ̄1)

Ā1

z2− z̄10
+ (γ1γ̄2− δ1δ̄2)

Ā2

z2− z̄20

]
. (A4b)

The first terms inφ′1(z1, z0), φ
′
2(z2, z0) are the singular solutions for an infinite domain and

the second terms are the regular solutions pertinent to a half plane. The material coefficients
are:

γk = 1− iµk; δk = 1+ iµk, k = 1,2 and 1 = γ1δ2− γ2δ1. (A4c)

Also,

zi = [(1− iµi)z + (1+ iµi)z̄] /2, i = 1,2. (A4d)

The complex coefficientsA1 andA2 are related to dislocation densitiesb = bx + iby as:

A1 = A11b + A12b̄, (A5a)

A2 = A21b + A22b̄. (A5b)

Then,φ̃(x)
′

1 (z1), φ̃
(x)′
2 (z2) andφ̃(y)

′
1 (z1), φ̃

(y)′
2 (z2) can be calculated from Equations (A4), (A5)

by settingb = 1 andb = i, respectively. Subsequently, the stressesGxij andGyij can be
determined form the complex stress potentials. For example,

Gxxx = 2Re
[
µ2

1φ̃
(x)′
1 + µ2

2φ̃
(x)′
2

]
.

The complex parametersAij in Equations (A5) are material properties, which can be found
as follows.Aj constitute the solution of the following equations:

δ1 −γ̄1 δ2 −γ̄2

−γ1 δ̄1 −γ2 δ̄2

p(µ1) −p(µ̄1) p(µ2) −p(µ̄2)

−p̄(µ1) p̄(µ̄1) −p̄(µ2) p̄(µ̄2)





A1

Ā1

A2

Ā2


=



0

0

b/2πi

−b̄/2πi


, (A6a)

where
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p(µk) = (β12− β16µk + β11µ
2
k)+ i(β22− β26µk + β12µ

2
k)/µk and p̄(µk) = p(µ̄k).

(A6b)

Therefore, if we denote byAr the solution to (A6) forb = 1 and byAi the solution to (A6)
for b = i, then from (A5), forb = 1,

A1 = A11+ A12 = Ar(1); A2 = A21+ A22 = Ar(3)
and forb = i,

A1 = A11i − A12i = Ai(1); A2 = A21i − A22i = Ai(3)
and these four equations can be solved forAij , i, j = 1,2. For example,

A11 = [Ar(1)− iAi(1)] /2. (A7)


