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Elasticity Solutions for Sandwich Orthotropic Cylindrical Shells
Under External/Internal Pressure or Axial Force

George A. Kardomateas™
Georgia Institute of Technology, Atlanta, Georgia 30332-0150

The elasticity solution is constructed for a cylindrical sandwich shell under external and/or internal pressure
and for the same shell under axial load. The solution is an extension of the one for a homogeneous, monolithic
shell and is provided in closed form. All three phases, that is, the two face sheets and the core, are assumed to
be orthotropic. Moreover, there are no restrictions as far as the individual thicknesses of the face sheets and
the sandwich construction may be asymmetric. These solutions can be used as benchmarks for assessing the
performance of various sandwich shell theories. Illustrative results are provided in comparison to the sandwich

shell theory.

Introduction

HE need for lightweight yet stiff and durable aerospace

structures has made the sandwich composite configuration a
leading-edge technology with promise for innovative high-perfor-
mance structural designs. Sandwich constructionis indeed increas-
ingly employed in sections of rotorcraft and fixed-wing aircraft
fuselages. A typical sandwich structure is composed of two thin
composite laminated faces and a thick soft core made of foam or
low-strength honeycomb.

The majority of the literature in sandwich composites is on the
plate configuration.!'> Among the smaller number of studies on
the sandwich shell geometry, we mention the papers by Reissner,?
Bienek and Freudenthal,* Baker and Herrmann,? Kollar,® Greenberg
et al.,” Birman and Simonyan,® and Frostig.” Sandwich shell theo-
ries are extensions of the well-known shell theories for monolithic
structuressuch as Reissner’s® or Love’s'? or Sanders’s'!!? shell the-
ory, with a set of additional assumptions imposed, usually that the
core carries only shear stresses and that the face sheets carry the nor-
mal stresses. Therefore, the extensional and bending stiffnesses of
the shell are calculated exclusively from the face-sheet stiffnesses,
whereas the transverse shear stress resultants are based exclusively
on the shear stiffnesses of the core.

Elasticity solutions are significant because they provide a bench-
mark for assessing the performance of the various shell theories. To
this extent, the geometry of a circular cylindricalshell is particularly
attractive for constructingelasticity solutions due to the axisymme-
try that simplifies the analysis. Elasticity solutions for monolithic
orthotropic cylindrical shells have been provided by Lekhnitskii.!?
However, elasticity solutions for sandwich cylindrical shell configu-
rations are essentially nonexistant. Like the sandwich shell theories,
elasticity solutions for sandwich shells can be obtained by properly
extending the solutions for monolithic structures. (This implies,
among others, enforcing the proper conditions at the interface of
the constituent phases, that is, face sheets and core.)

In this paper we formulate the elasticity solution for a circular
cylindrical sandwich shell, first under external and/or internal pres-
sure and then under axial loading, where the face sheets and the core
are all orthotropic. No restrictions are imposed as far as the indi-
vidual thicknessesof the face sheets, and the sandwich construction
may be asymmetric. A generalized plane deformation assumption
is made for the case of external and/or internal pressure, that is, the
shell is assumed essentially to have infinite length. Then, not only
the stresses, but also the displacements do not depend on the axial
coordinate. For the case of axial loading, we assume that the axial

Received 13 March 2000; revision received 10 August 2000; accepted for
publication 14 August 2000. Copyright © 2001 by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved.

*Professor of Aerospace Engineering.

713

force at the ends is applied so that a uniformly distributed constant
axial strain exists throughout the section. The solutions are derived
in the form of directly applicableexpressions. Subsequently, the re-
sulting stress distribution is compared with the one from sandwich
shell theory.

Formulation

We consider the elastic equilibrium of a body in the form of a
hollowroundcylinder(a tube) of sandwichconstructionthat consists
of two face sheets and a core (Fig. 1). All three phases are made
from a material with cylindrical orthotropy. The body is under the
influence of stresses distributed along the lateral surface and on
the ends. Let us assume that 1) the axis of orthotropy coincides
with the geometric axis of the body; 2) there are planes of elastic
symmetry normal to the axis of the cylinder; 3) the stressesacting on
the outer and inner surfaces are normal and distributed uniformly;
and 4) the stresses that act on the end surfaces reduce to forces that
are directed along the axis and to twisting moments. We denote the
thickness of the outer face sheet by fi, that of the inner face sheet
by f, and that of the core by c. The inner radius is a and the outer
bwhereb=a+ f,+c+ fi.

Let us denote each phase by i where i = f; for the outer face
sheet, i = ¢ for the core, and i = f, for the inner face sheet. Then,
for each phase, the orthotropic strain-stress relations are

€ [ai, dai, a, 0 0 0|0y
ee()lg a, ay a 0 0 0 09( é))
€l _ aj; dy a; 0 0 0 ol
yor 1o o 0 a, 0 0]z
D 0 0 0 0 dy 0 A
ol Lo o 0 0 0 a9
i=fi.e.f (1)

where afj are the compliance constants. (We have used the notation
l1=r,2=0,and3=z.)

We have taken the axis of the body as the z axis of the cylindrical
coordinate system, and let us direct the polar x axis arbitrarily in
the plane of one of the end sections. The following notations are
introduced: a and b are the inner and outer radii; p and ¢ are the
inner and outer pressures per unit area, respectively; P is the axial
force; M is the twisting moment.

An elasticity solution for a monolithic,homogeneous,orthotropic
body has been provided by Lekhnitskii.'* This solution will be used
in the formulation of the corresponding one for the sandwich shell.
Let us introduce the following notation for constants that enter into
the stress formulas and depend on the elastic properties:
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¥y
Fig.1 Cylindrical sandwich shell.
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P i i )i
B =ay a13/a33’

S Y I B
B, =aj, al3“23/“33a

ki:\/ il/ﬁéz’ Mi=1/ai4
gi:(ai3_a;3)/(ﬁéz_ﬁi1)a i=fi,c f 3)

One remark: in the case of isotropy (a!, = ai, and B, = Bi,), we
should take £ to be zero, and all of the formulas in this paper will
still be valid.

If we assume that the distribution of the external stresses is iden-
tical in all of the cross sections and, in addition, that the stresses
depend only on the distance r from the axis, then Lekhnitskii'® pro-
vides a solution for the stresses in each of the orthotropic phases in
terms of two stress functions, F© (r) and WO (r), i = fi, ¢, f», so
that

o )= FUOr, o)) =FY @), i=ficf
(4a)

0y =0, =0, )=-0"0"), i=fich
(4b)

o) =CV — (1ap)[ajz0) + ajyoy) ] i=fie f (@4o)

Under the aforementioned assumptions, the equations of equi-
librium and the condition that the displacements are single-valued
functions of the coordinates will be satisfied if

FO@r) = (P28 + [C ] (1 + k) ]r'*h

e Ja—k)rR = fiefs (5a)

WOy = =69 [2)r?, i=fi.c, fr (5b)

The constants C?, C;i), C;i), and 6% are found from the condi-
tionson the cylindricallateral surfaces,forexample, applieduniform
internal and/or external pressure, and the conditionson the ends, for

example, appliedaxial load or axial strain or twisting moment. From
Eqgs. (4), the stresses in each of the phases are

o) =CV%+ COrt T P = fie o (62)
0 (r) = CY& + CPkr" = = CPkr ™M =1, i= fic, fo
(6b)
7,0 () =609 ir, i=fic f (6¢)
, , a,+al Nal, + alk;
ocP(ry=cP|1- (13—1'23)51‘ - c;l>(‘3—i23),kf—l
ass as;
Nal, —al.k
—Cé”(”—.”)r‘k"-‘, i=ficf (6d)

az;

Denoting by u'”, u”, and w® the displacements in the radial,
circumferential, and axial directions, respectively, the displacement
field excluding rigid body translation and rotation for this case is
given as

ud(r,z) = UD (), ul(r,z) =09zr + VO (r)

w(r,z) = CPal,z + W9 (r) (7a)

where U, V@ and W® are found from the strain-displacement
relations and the stress field, Egs. (4), from the following:

ou® i 5 i (D) el
“or 119, + Braogy +aj;C" (7b)
1 av(z‘) Uu®w ) ) ) ; ; ;
o0 + - ﬁiZUr(i) + ﬁézaege) + a23C() (70)
19U® VD Vo —o oW® _ 1 9W® —0
ro90 ar ro ar roa0
(7d)

Therefore, with the definitions (3) for k; and §;, the displacement
field that satisfies these equationsand wouldresultin strainsis found
by integrating Egs. (7):

U () = COlals + & (B, + Bio) |r + C (Bl + kiBly) [ ki ]r®
~CO[(BE — ki) [k ]r (8a)

VO @y =0, W@y =0 (8b)

Next, we consider the case of a sandwich orthotropic cylinder
under external and/or internal pressures and, to enable solving the
problem directly, we make the additional assumption that a state of
generalized plane deformation exists.

Generalized Plane Deformation of a Sandwich Orthotropic Tube
Subjected to Internal and/or External Pressures

Let us assume that the sandwich cylinder considered in the pre-
ceding section is deformed by the pressures p and ¢ distributed
uniformly on the inner and outer surfaces, respectively, and has in-
finite length (generalized plane deformation assumption). Then, not
only the stresses, but also the displacements, do not depend on z.
Alternatively, this is the assumption we would make if the cylinder
were securely fixed at the ends. Consequently, we can assume

CP=0"=0 ©

The traction continuity conditionsat the core/face sheetinterfaces
give

e —5© © — gD

o lr=at T U br=at g ol =p— gy T T

r=b—fi

(10)
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Applying Egs. (6) and (9), this gives
G+ )+ P @+ et
=+ f) T+ CY @+ )R (11a)
GOl = T GO — fy !
=B — )+ eV — iyt (11b)

The displacement continuity at the core/face sheet interfacesis,
in turn,

e —y© U© —yun
r=a+ f2 r=a+fz’ r=b—-fi r=b-—fi
(12)
which, by use of Egs. (8a) and (9), gives
2 _ f2
C(fz)( + f2/312) (a-i—fz)k” _C;fz)(ﬁll kﬁﬁn)(a-}—fz)_k”
kfz kfz
c +kL c
:C2(c>( 11 - /312) @+ fr)k
¢ _kc ¢
—Cé")—(ﬁ—” 3 i) (a+ f) " (13a)
¢ +kL ¢ ) ¢ _kc ¢
coButRAL) (B R
k. k.
N N
_ Cz(fl)(ﬁll +kf1/312)(b_ fl)k“
kf]
C(f')(_k—flﬁ)(b_ fl)_kfl (13b)
£l

The conditions of applied internal and external pressure at the
bounding surfaces are

o2, _ =P o, _, =4 (14)
which gives
Va4 e et = —p
YVt cVpkn-t = 4 (15)

The six unknowns C;i), C;i), i = fi, ¢, f3,are found from solving
this system of six linear equations, namely, Egs. (11a), (11b), (13a),
(13b), and (15), in terms of p and g. Then the stresses are found by
Egs. (6).

Because there is no shear stress ,,, there is no resultant twisting
moment. The stresses o, on the ends and at any cross sectionreduce
to an axial force P, Wthh can be found from

P b a+ fr b—f
—_— = / o, rdr = / crz(zfz)r dr +/ crz(;')r dr
27 a a a+ fa

b
+ / crz(zfl)r dr (16)
b—f

Using Eq. (6d), this becomes

P/2r = —(82+ &3) (17a)

where
l
g = C;f') (a13 +a2 kfl) [b(kfl+1) —(b- fl)(kfl+l)]
a33 (kpi+1)
(a +a L)
C(a) 13 23 b— (ke +1) (ke +1)
O (b= f)tD =@+ f)**"]
2
o k) e _gunen]

a332 tkpp + 1)

3= C;f') (a13( ka23—l:_fiz [b(—kfl +1) _ b — fl)(—ka— 1)]
33\ RS

© (ac —as, L)

+C b — (ke +1) + (ke +1)

ey +1)[< ) —(a+f) ]
o

+c<f2>(—a23kf2)[(a + fo)krth a(—kf2+1)] (17¢)
2
ay; (kg + 1)

Of course, the stress o, is nonuniformlydistributedover the cross
section, but a uniform (zero) axial strain exists.

Sandwich Shell Theory: External or Internal Pressure

We are referring to a coordinate system z, 6, and r, in which z
and 0 are in the axial and circumferential directions, and 7 is in the
(radial) direction of the outward normal to the middle surface. The
correspondingdisplacementsat any pointare denotedby w, v, and u.

In addition to Eq. (1), which is in terms of the compliance con-
stants, we shall use the stress-strainrelationsin terms of the stiffness
constants, as follows:

e ¢y ¢, ¢35 0 0 0 €

9(59) ¢, ¢, ¢y 0 0 0 Gfglf;

o | |y by ey 00 0 ed

O] |0 0 0 ¢y 0 0]y

tr(? 0 0 0 0 cgs 0 Vr(i)

o 0 0 0 0 0 cgfl|y®
i=fi,c, f» (18)

where again we have used the notation 1 =r,2=6,and3=z.

The sandwich shell theory employed is described by Birman and
Simonyan® and is a version of Love’s'? shell theory extended to
shear deformable structures (but note the absence of shear in this
case of orthotropy). The core carries only shear stresses and the
face sheets carry the normal stresses; therefore, the extensionaland
bending stiffnesses of the shell are based exclusively on the face-
sheet stiffnesses. On the contrary, transverse shear stress resultants
(should they exist) are based exclusively on the shear stiffnesses of
the core.

Taking into account the displacement distribution through the
thickness assumed in the shell theory? we can easily see that in
the generalized plane deformation problems under consideration,
the displacement field throughout the shell is

u(r, 9, z) = up, v(r,0,z) =0, w(r,0,72) =€z (19a)
where u is a constant, and €, is the uniform axial strain.

The relationshipsfor the strains throughoutthe shell, correspond-
ing to Love’s'® shell theory are

€, =0, €99 = Ug/R, € = € (19b)
where R is the midsurfaceradius. The shear strains are all zero. No-
tice that in these simplified, axisymmetric, generalized plane defor-
mantion problems, there is no difference between first-order shear
deformation and classical solutions.
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The stress resultants of interest are
Ng = C22629 + C23€?Z, Nz = C23629 + C33€?Z, Nzg =0
(19¢)

where el.oj are the midsurface strains, identical to the ones in
Eq. (19b). Moreover, the Cij are the shell stiffness constants, gov-
erned by the face sheets (in the context of sandwich shell formula-
tion) by

Cij = fic + fell, i,j=23 (19d)

For external pressure, the equilibrium equations in terms of the
stress resultants (see, for example, Brush and Almroth'#) are satis-
fied if

N, = —pR (20a)

Furthermore, based on the assumptions of the problem for the ex-
ternal pressure case, €y = 0. Then Egs. (19¢) and (19b) give

Uy = _PRZ/sz» € = —PpR/Cx (20b)
Subsequently, by using Eq. (18), the stresses are

o, = _P(ClizR/CZZ)’ Ogg = _P(CézR/CZZ)

e = —plchR/C)

which would, therefore, undergo a finite change at the face sheet/
core interfaces.

i= fa,c, fi (20c)

Results: External or Internal Pressure

As an illustrative example, the stress and displacement distribu-
tion was determined for a sandwich composite circular cylindrical
shell of outer radius b =1 m, a ratio of outside over inside radii
b/a =1.20, and ratios of face-sheet thicknesses over shell thick-
ness f,/h = fi/h=0.10.

The face sheets are made from unidirectional E-glass/polyester
with the fiber direction along the circumference, with properties

EJMY =40GPa,  E/MY = EVYY = 10GPa

Gy =35GPa,  GYMY = GYMY =45 GPa

v;{l.fZ) = 0.40, v2<1f1.f2> _ vgl.ﬁ) =026
Note that 1 is the radial r, 2 is the circumferential 6, and 3 is the
axial z direction.

The core is assumed to be made from cross-linked polyvinyl
chloride (PVC) foam, which is isotropic with

E¢ =75 MPa, v =0.30

Notice that by referring to Eq. (1), the compliance constants for
each orthotropicphase are

ay =1/E, ay =1/E,, ay =1/E;3
ays = 1/Ga3, ass = 1/Gsy, ass = 1/ Gy
ap = —vy/Ey, a3 = —v3/Es, ap = —v3/E;3

For the case of pure external pressure ¢, Fig. 2 shows the radial
displacementU (r), normalized with ¢ R?/ C,,, where C», is defined
in Eq. (19d). The elasticity solution predicts a nonumiformdisplace-
ment as opposed to the shell theory. Figures 3a-3c show the stresses
0,,, 0g9, and o,_, normalized with the external pressure g. There are
noticabledifferencesbetween the elasticity and the shell theory pre-
dictions. A higher magnitude o,, is predicted in the shell theory at
the face-sheet regions. The hoop stress oy, at the outer bounding
surface is predicted higher in the elasticity solution, whereas oy, at
the inner bounding surface is predicted higher in the shell theory.
The shell theory is also predicting a higher axial stress o, at the
face-sheetregions.

Table 1 Elasticity vs shell for pure external pressure

oyp (a) elast oyp (b) elast U (a) elast U (D) elast
b/a ogg (a) shell oyp (b) shell U (a) shell U (b) shell
1.05 1.002 1.014 1.018 1.078
1.10 0.947 1.100 0.940 1.193
1.15 0.859 1.220 0.833 1.348
1.20 0.764 1.348 0.723 1.517

-0.8 T T T

Elasticity
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e , ; :
0.9 0.95 1 1.05 11
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Fig. 2 Radial displacement U(r) for a cylindrical sandwich shell of
mean radius R under uniform external pressure g.

These differences are, of course, expected to become smaller as
the shell becomes thinner, that is, as the ratio b/a tends closer to
unity. This is clearly shown in Table 1, which gives the ratio of
the elasticity vs shell theory predictions for oy and U at the inner
and outer bounding surfaces, that is, at r =a and b, for a range
of thicknesses, as expressed by the ratio b/a (case of pure external
pressure). In Table 1, the outsideradius b and the relative thicknesses
of the face sheets, as expressed by the ratios f;/h and f,/ h, as well
as the material properties for the face sheets and the core, have
remained the same.

Next, we consider the case of an applied axial force.

Orthotropic Sandwich Hollow Cylinder Loaded by an Axial Force

We now assume that the shell is deformed only by stresses dis-
tributed on the ends and these reduce to a tensile force P (Fig. 1).
The force at the ends is applied so that a uniformly distributed con-
stant axial strain €, exists throughout the section. Note also that no
resultant twisting moment is assumed to exist and that §' = 0.

Because from Eq. (7a) the axial strainis C”al,, the first condition
is

CY%af2 = C9a¢, = CYVall = ¢ 21

that is, the constants C® are now nonzero.

Next, the traction conditions (10) at the face sheet/core interfaces
give, by use of Egs. (6a) and (21)

co(€2/al) +CP @+ )=+ P a+ fr) k!

= o8 /as) + COa+ )+ COa+ foy !
(22a)

eol8./a5,) + COb— fl -+ OB~ fiy

=5 /afy) + &0 — fr Tt OB e
(22b)

The displacement continuity at the face sheet/core interfaces,
Eq. (12), becomes, by use of Egs. (8a) and (21),
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Fig.3a Radialstress o, for a cylindrical sandwich shell of mean radius
R under uniform external pressure q.
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Fig.3b Hoop stress ogg for a cylindrical sandwich shell of mean radius
R under uniform external pressure q.
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Fig.3c Axialstress o, for a cylindrical sandwich shell of mean radius
R under uniform external pressure gq.
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€o f2
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(a+ f2)
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+Cy? (a+ f)tr
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o f2
—C;f”( 11 kkﬂﬂn)(a-l-fz)_kﬂ
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O e A CTY) P
as;
Bl + kB
_i_C;L)( 11 - 12) (a+fz)k“
Bl — kB,
—Cé”—( — ) @+ f)* (23a)

c

[ag, + &(B7, + B7) ]

c
az;

(B5, + ke Bi,)
k

(b—fl)—i—C;") (b— f)k

€0

(B — ko)
k.

lafs + &0 (8], + B12)]

=¢o h
az;

-cv -

b-f)
(B +kniB1)
kfl

(B —kniB3)
kfl

+cy b= f)b

—cv (b— fi) Tk (23b)
Next, the conditions of traction-free lateral surfaces

(f2)
Urr

—0, oYM =0 (24a)

r=>b

r=a

give

co(Epfaf) + CiPab = 4 CPatr" =0 (24b)
co(&pifall) + CPB T L O T =0 (240)

Again, the solution is found by solving for the six constants
C;’), C;’), i = fi,c, f>,interms of €, from the six linear equations
(22a-23Db), (24b), and (24¢).

An expressionfor the resultant applied force P in terms of €y can
be found by intergrating o, as in Eq. (16), and this now gives, by
the use of Eq. (6d),

P/2r = —(g1 + 8+ &3) (25a)

where g, and g3 are given by Egs. (17b) and (17¢) and

81 |: (a1f3|+a2fsl) :|[b2_(b_f1)2]
—=|1- gfl

h f1
€ ay 2ay,

I |:1 _ (afs +a§3) $C:| [(b —f)r—(a+ fz)z]

c c
as; 2as3,

+ [1 _ et an) fz} [ax sy o] (25b)

f2 f2
asz 2ay,
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Of course, the axial stress o, is distributedalong the cross section
nonuniformly as opposed to the axial strain €;, which was assumed
to be uniform.

Sandwich Shell Theory: Axial Loading

For axial loading with a uniform axial strain €, the equilibrium
equations are satisfied if Ny =0, which, by using Eqs. (22¢) and
(22b), gives

Uy = —€gRCp/Cn, € = —€0Cr3/Cxy (26a)
Subsequently, N, can be obtained from Eq. (22c¢) as
N, = 60(C33 - C§3/C22) (26b)

Then the stress field is found by using Egs. (22b) and (24):

Opr = €0[Cli3 - Cilz(czs/czz)], Opg = GO[C;3 - Céz(cz3/czz)]

O,z = € [Cé3 - C;3€0(C23/C22)] (26¢)
that is, the stresses again undego a finite jump at the face sheet/core
interfaces.

Results: Axial Loading

For the case of pure axial loading by a uniform applied axial
strain €,, Fig. 4 gives the displacement U(r), normalized with
€0RCy;3/Cyy. Again, the elasticity solution predicts a nonuniform
displacement distribution as opposed to the shell theory. Next,
Figs. 5a-5c¢ show the stresses o,,, 0gg, and o, normalized with
€0Cs3/(f1 + f2). There are again noticable differences between the
elasticity and the shell theory predictions. Again, a higher o,, and
o, is predictedin the shell theory at the face-sheetregions; however,
the magnitude of oy is predicted higher by the elasticity solution at
both the outer and the inner bounding surface.

Also, note that because of the orthotropy and the axisymmetric
geometry, there are no shear stresses generated from both loadings
of internal/external pressure and axial loading; therefore, even a
first-order shear deformation theory would not result in improved
shell theory predictions. This would not be the case if the face sheets
were fully anisotropicrather than orthotropic,even if the core were
to remain isotropic.

Finally, note that the concept of sandwich construction may not
be ideal for the loading and structure analyzed. This is because in
the case considered there is no shear in the core, and, to really take
advantage of the sandwich concept, the core should carry the shear
and the face sheet should support the normal stresses. If buckling
occurs,on the other hand, then the core would support the shear, and
the solution presented can be used as the exact prebuckling state of
stress and displacementin the formulation of the buckling problem.
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07 oo
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R 1 i i
0.9 0.35 1 1.08 1.1
/R

Fig. 4 Radial displacement U(r) for a cylindrical sandwich shell of
mean radius R under uniformly applied axial strain €.
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Fig.5a Radialstress o, for a cylindrical sandwich shell of mean radius
R under uniformly applied axial strain €.
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Fig.5b Hoop stress ogg for a cylindrical sandwich shell of mean radius
R under uniformly applied axial strain €.
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Fig.5c¢ Axialstress o, for a cylindrical sandwich shell of mean radius
R under uniformly applied axial strain €.
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Conclusions

A closed-form elasticity solution is constructed for a cylindrical
sandwich shell under external or internal pressure or axial load, in
which all three phases, i.e., the two face sheets and the core, are
assumed to be orthotropic. A comparison of results for the stresses
and displacementswith sandwichshell theory predictionsshows that
differences can be quite noticeable. The present solutions can serve
as benchmarks for assessing the performance of various sandwich
shell theories.
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