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Abstract

This paper presents a method for obtaining the mixed-mode stress intensity factors for bimaterial interface cracks or
cracks parallel to the bimaterial interface in half-plane configurations. First, dislocation solutions in two different bi-
material half planes are presented. The boundaries of these two half planes are either parallel or perpendicular to the
bimaterial interface. A surface dislocation model is employed to ensure the traction-free boundary conditions. The
dislocation solutions are then applied to calculate the mixed mode stress intensity factors of cracks either at the in-
terface or parallel to the interface. The effects of material mismatch, material interface, and boundary on the stress
intensity factors are investigated extensively. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bimaterials are extensively used in many engineered-material systems, such as composite structures,
electronic packaging, and thin film constructions. Accurate stress intensity factor calculations are essential
in the prediction of failure and the calculation of crack growth rates in these structures. A very effective
method of determining stress intensity factors is the continuous dislocation technique. The cornerstone of
this method is the fundamental solution of a dislocation in the corresponding configuration. Eshelby et al.
(1953) and Stroh (1958) are among the pioneers who presented analytical solutions for a dislocation in
general anisotropic materials. Following their work, Ting (1986) and Qu and Li (1991) studied the classical
problem of a dislocation situated at the interface between two anisotropic elastic half planes and obtained
an analytical solution to the dislocation problem. Atkinson and Eftaxiopoulos (1991) also achieved the
solution for a dislocation in an anisotropic half plane and a bimaterial infinite plane, using the basic
formulation of Stroh and appropriate image systems.
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Unlike homogeneous fully anisotropic materials, the analytical solution for a dislocation in a bimaterial
half plane is unknown because of the material heterogeneity and the traction-free boundary conditions. All
the afore-mentioned analytic dislocation solutions are restricted to bimaterial infinite planes. Dislocation
solutions for bimaterial geometries with finite domains such as the half plane or the infinite strip are not
available in the literature so far. Yet, several researchers investigated dislocations in homogeneous infinite
strips and were able to achieve the traction-free boundary conditions by different techniques. Civelek and
Erdogan (1982) developed a numerical method to calculate the dislocation solution in an isotropic ho-
mogeneous infinite strip by superposing the infinite plane with an additional elastic field, which is expressed
by an airy stress function with Fourier transformation. Suo (1990) and Suo and Hutchinson (1990) ex-
tended this method to orthotropic materials and calculated the mixed-mode stress intensity factors for an
infinite strip with semi-infinite cracks subjected to edge bending. A surface dislocation model was proposed
by Jagannadham and Marcinkowski (1979) to calculate the stress fields of a finite body subjected to either
applied stresses or an internal stress. Huang and Kardomateas (1999) developed a method to calculate the
stress fields of a dislocation in a homogeneous anisotropic infinite strip and applied the solution to calculate
the stress intensity factors for both single edge and double edge cracks in a fully anisotropic infinite strip. In
addition, different finite element methods are also proposed to calculate the mixed-mode energy release rate
for cracks or delaminations in cross-ply composite materials (O’Brien and Hooper, 1993; Qian and Sun,
1997; etc.).

In this paper, the analytic solution for a dislocation in an anisotropic bimaterial infinite plane is sum-
marized first. The stress fields of a dislocation in two different types of bimaterial half planes are subse-
quently obtained by distributing a dislocation array along the traction free boundary of the half planes.
These dislocation solutions are then applied to calculate the mixed-mode stress intensity factors of interface
cracks or cracks parallel to the interface in both bimaterial half plane configurations. Some results of
practical interest are presented.

2. Formulation
2.1. Dislocation solution in a bimaterial infinite plane

The analytical solution for dislocations in a bimaterial infinite plane has several different versions. Al-
most all of them originate from Stroh’s formulation. Combining the solutions presented by Ting (1986), Qu
and Li (1991) and Atkinson and Eftaxiopoulos (1991), we present first a concise summary of this elegant
analytical solution for a dislocation in a bimaterial infinite plane.

The stress potentials for an anisotropic medium can be expressed as

{¢:} =B{fi(z)} + B{/,(z)}, i «=1,2 3. (1)
The 3 x 3 matrix B is introduced by Ting (1986) as
B = (R +pT)A, 2)

where p = {p1,ps, p3}T and A = [aj,a,,a;] are the eigenvector and eigenvalue matrix of the following
equation, respectively,

{Q+p(R+R") +p’T}a =0, (3)

and Q, R and T are stiffness matrices defined from the stiffness constants C;; as

Q = [04] = [Cun], R=[Ry] =[Cur), T =[Tu]=[Ciual, i, k=1, 2, 3. (4)
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Denoting the eigenvectors with positive imaginary part as p,, o« =1, 2, 3, z, in Eq. (1) are defined as

,ipaz+1+ipg_

Zy = X1+ puxa = 3 55 a=1, 2, 3. (5)
The stress components can be calculated from Eq. (1) as
0, , B//= =
o = — 0 = B {1120}~ BUEN {7} (62)
2
_ a¢z _ ! R) (= . _
Op = o B{fa(zd)} —|—B{f1(zi)}, i, a=1, 12, 3. (6b)

The double angle brackets stand for the diagonal matrix, i.e.,

pn 0 0
=10 m 0. ™)
O O P3

Assuming the dislocation b = {5y, b, b3}T is located at zy = x)9 + ixy in the upper half plane, i.e., me-
dium (1), of the bimaterial infinite plane (as shown in Fig. 1), the functions f,(z,) in Egs. (1), (6a) and (6b)
can be found in Atkinson and Eftaxiopoulos (1991):

1 1
Oy = —MIDOY Inz) — 2y + —E, In(z) —z"), (8)
4n 4n
1
FAED) = 37 Gl = 7)), 9)
where
A = ) MU=BO D= A - AN

and M,, E,, and G, stand for the o row of the matrix M, E, and G, respectively, i.e., M,, E,, and G, are
1 x 3 row vectors. The superscripts (1) and (2) indicate material (1) and (2), respectively, and E and G are
constants, depending on the dislocation density b and the elastic properties of media (1) and (2). They can
be determined by solving the following linear equations:

Zy—=X1 0+iX20

=L

-
s

2 X

Fig. 1. Dislocation in bimaterial infinite plane.
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I 10 (1

(8- (o) o
G B (M'D"b))

Detailed derivation of Eq. (10) can be found in Atkinson and Eftaxiopoulos (1991). Although in that
paper it was not specifically stated that their solution is applicable to the interface dislocation, our cal-
culation yielded the same results from both Atkinson and Eftaxiopoulos (1991) and Qu and Li (1991)
method for interface dislocations.

Because of the linearity of the stress fields of dislocations in the infinite bimaterial plane, we can express
the stress components at z = x; + ix, due to a dislocation b = {5y, b, b3}T at zo = xj9 + 1xy as

_A A®
B B®

0;(x1,%2) = Fy;(x1,x2, %10, x20) b(x10, X20), (11)
where

Fij(x17x27x10ax20) = [flij(xlax27x10ax20)asz‘j(xl,xZaxlmeO)vf3ij(x1;x27x107x20)]a (12)

b(x10,x20) = {b1(x10,X20), b2(x10, X20), b3 (x10,x20) } - (13)

The physical meaning of f;; is that they are the stress components ¢;; due to a unit dislocation b, = 1.
Therefore, we can calculate fi;;, fo;, and f3; from Eqs. (6a) and (6b) by setting b = {1, 0, 0}',b={0,1,0}",
and b = {0,0,1}", respectively.

2.2. Dislocation solution in bimaterial half planes

Next, the dislocation solution in two different half plane configurations is formulated. The half plane
configuration shown in Fig. 2 consists of an anisotropic infinite strip with thickness A and an anisotropic
half plane. The free boundary is parallel to the material interface. The second half plane configuration is
composed of two anisotropic infinite quarter planes with the free boundary perpendicular to the interface,
as shown in Fig. 3. The basic idea of calculating the dislocation solution in the half plane is to apply a
dislocation array along the free boundary of the half plane. The densities of the dislocation array are
determined in such a way that the traction forces along the boundary due to the single dislocation and the
dislocation array cancel out and thus the boundary is traction free, as shown in Figs. 2 and 3. For con-
venience, the half plane configuration in Fig. 2 is referred to as half plane A, and the one in Fig. 3 is referred
to as half plane B.

Let’s formulate the dislocation solution for half plane A first. Dislocation b = {by, b, b3}T is located at
an arbitrary point zy = x19 + ixy0. The geometry of a dislocation in the infinite strip can be decomposed into
two geometries. The first one is a single dislocation located in the bimaterial infinite plane. The dashed line

Z=X¢+iXa0 Z=X0iXa0

Z=X,o+Xy

L L L

Q(z) X, ) - Q(z) X ) ‘l‘ Q@) X,

Fig. 2. Dislocation solution in half plane A: boundary parallel to interface.
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Fig. 3. Dislocation solution in half plane B: boundary perpendicular to interface.

2

stands for the boundary of the half plane, which is supposed to be traction free. The traction forces along
the dashed line due to the single dislocation can be determined from Eq. (11):

US) (x(lz)v —H) = Fz:f(x(lz), —H , x10,%20)b(x10,%20), (14)

where ij = 21, 22 and 23.

The second geometry is the infinite plane with a dislocation array along the supposed-to-be boundary of
the half plane. To satisfy the traction free conditions along the half plane boundary, the traction forces
along the dashed line in the second geometry should be the opposite of the traction forces in the first
geometry. Suppose that the dislocation array is distributed from —oo to oo, then the stress components
along the dashed line due to the dislocation array can be calculated as

ai,-(xgz), -H) = / F,:,-(x$2>, —H,s,—H)b(s,—H)ds = —gW (x$2>, —H), (15)

(o]

where ij = 21, 22, and 23. Eq. (15) is a set of singular integral equations. Gaussian quadrature is adopted

to solve these numerically. A summary of applying Gaussian quadrature to solve the singular integral

equations is given in Appendix A. First, a variable transformation is introduced to transform the integral
from [—o0, oo] to [—1, 1]

; i .

A=, Tl L] s=—— §e[-1,1]. (16)

1 -3’

Substituting Eq. (16) into Eq. (15) yields

1 2
1
O_ij(x(12)’ _H) = / Fij(x§2)7 _H’ S, _H)b(§7 _H) (1 +i)2 ds = _O—z(‘;) (.Xng), _H)' (17)
-1 -5 :
Now, b(s, —H) should be zero at s = —oo, oo because of the self equilibrium of the dislocation stress

field. In other words, b(s, —H) is bounded at § = —1, +1. Therefore, case IV in Appendix A is adopted to
solve Eq. (17). Accordingly, the dislocation densities may be written as

b(s, —H) = W(EbE, —H), WE) =vV1- 2. (18)

Substituting Eq. (18) into Eq. (17), the numerical form of the singular integral equations can be reduced
to a set of algebraic equations having the following matrix forms (Appendix A):
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K 2
—o5) (), —H)
~ 2 =~ 2 s~ N 2
(), — s — H) [ (F))B(,, —H) = { =o' (%), —H) ¢, (19)
K 2
—o5 (23, —H)
where
le (x(lzli’ _Ha Sm s _H)
By, —H s, —H)| = | (), —H, 5, —H) | (20)
Fy (x(lzlia —H, sy, _H)
- 1+ 2) i S 1)
m - m b - 9 Sm = ~ .
(1-gy’ -z -5,

The integration points s,,, collocation points #;, and weight coefficients #,, are calculated from case IV of
Table 4 in Appendix A.

From Eq. (19), we can calculate the dislocations b(s,,, —H), which are related to the single dislocation b.
Denote the dislocation densities along the boundary of the half plane as b; due to b = {1,0, O}T, as b, due
tob = {0,1,0}", and as b; due to b = {0,0, 1}". Superposing the two elastic fields in Fig. 2, we can obtain
the stress fields for a dislocation b = {5, bz,b3}T located at zy = x19 + ixy in the half plane:

04(x1,%2) = Fy;(x1, %2, X10, %20 )b (10, X20) (22)

where

Fij(x17x2ax107x20) = [ﬂij(xlax27x10;x20);f;ij(xl7x2;x103x20)3.f;1‘j(x17x23x107x20):|;

ﬁij(x17x27x107x20) :ﬁij(xlvxZaxl()axZO) + T Ej(x17x2ysm7 - H):| <<%>>B[(§m, —H) l: l, 2, 3 (23)

The formulation for a dislocation in half plane B is only slightly different from that for half plane A.
Since the boundary of half plane B is aligned with the x, axis, the stress components in Eqgs. (14) and (15)
should be 6;(0,x,), i = 1, 2, 3. These differences notwithstanding, one should be able to follow the pro-
cedure depicted above and obtain the dislocation solution for the half plane B easily.

2.3. Mixed-mode stress intensity factors for interface cracks and cracks parallel to the interface in bimaterial
anisotropic half planes

In this section, the dislocation solutions for both half planes are applied to calculate the stress intensity
factors for interface cracks and cracks parallel to the interface.

A crack of length 2a in half plane A is shown in Fig. 4a, which is parallel to the interface at a vertical
distance of y;. If y, = 0, the crack is located at the interface and thus it turns into an interface crack. The
origin of the coordinate system is located at the middle point of the interface crack. The crack in half plane
B is parallel to the interface and perpendicular to the boundary, as shown in Fig. 4b. The vertical distance
between the crack and the interface is y, and the left crack tip A is located at a horizontal distance x, from
the boundary. Again, the crack becomes an interface crack when y;, = 0. We denote by 73;, 15, and >3 the
external load distributed along the crack surfaces. Only the tensile load Ty, is studied in this paper. Both
cracks can be modeled as a series of dislocations with dislocation densities b(s, y,) in the half plane.

Considering the crack in half plane A, the tractions along the crack surfaces due to the dislocation series
are
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Fig. 4. Cracks in half plane A and B.

gl-j(xl’yt)(d) :/ F,-j(xl,y,,s,y,)b(s,y,)ds, ij =21, 22, 23, (24)

a

which should be equal to the opposite of the external loads 73, 7>, and T»3. Since both ends of the crack are
singular, we use the case I Gaussian formula (see Appendix A) to solve Eq. (24). The 3(N — 1) linear al-
gebraic equations are
naf‘,:,-(xl,k,y,,sm,y,)<<%, w,, W,,,}}f)(sm,y,) =—-T;(xiey) j=21,22,23, k=1,2,..., N—1,
(25)

where

o~ 7 1/~ _ b(gmayt)
S = A8y, X1 = aty, b(Sm,)/t) = \/1—4:——5—3; (26)

Here we assume the stress singularity at the interface crack tip is 1/4/r because the oscillation index of
interface crack is small (e < 0.03) for the materials studied and the contact zone due to crack tip stress
oscillation is very small (6 < 107*) for tensile loading.

In addition, the requirement that the crack surfaces physically come together at both ends imposes three
additional equations:

N
> Wubi(Gwy) =0, 1=1,2, 3. (27)
m=1

For the crack shown in Fig. 4b, Eq. (25) still applies except that the stress functions F (X1 ks Vey Sy 1) 1N
Eq. (25) are the stress fields of a dislocation in half plane B and Eq. (26) becomes

Sm =X +a+as,,  Xix=x+a+al, (28)

where §,, and #; are also calculated from case I in Table 4.
Egs. (25) and (27) enable us to calculate the dislocation densities b(s,,, 0) at the N integration points. The
crack-tip dislocation densities can be extrapolated from these N integration points as

N
bi(1,3) = Mg Y bpbi(Su, 1), (29a)
m=1

for the right crack tip, and
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N
bl(_layt) = MEZbEbI(§N+1—m;yt)a (29b)

m=1

for the left crack tip (Hills et al., 1996), where by = sin[n(2m — 1)(2N)/4N]/ sin[n(2m — 1) /4N], Mz = 1/N,
and / =1, 2, 3.

The stress intensity factor K at the crack tip is related to the crack-tip dislocation densities as (see
Appendix B)

VTa
K(+1) = [Ku, Ky, K] = ~—— Re

3 ) (30a)

B{MDB( + 1)+ 6(n) iEf( + 1)}

J=1

where Re[ | stands for the real part of a complex variable and d(y,) is the Dirac delta function. E(+1) is
solved from Eq. (10) with b =b(+1) and E;(+1) is the j column vector of E(41). Similarly,

VTa
K(—l) = [KII»KviIII] =———Re

: . (30b)

B{MDB( —1)+0(n) XS:E,( - 1)}

=1

Egs. (30a) and (30b) give an explicit relation between the mixed-mode stress intensity factors and the
crack tip dislocation densities. For the sake of clarity, a detailed derivation of Egs. (30a) and (30b) is
presented separately in Appendix B.

3. Results and discussions

The method presented above is implemented in a computer code for both bimaterial half planes. First, to
validate this method, we choose the two materials to be identical. Under this condition, the bimaterial
solution should reduce to the solution for homogeneous anisotropic materials. In this manner, it is easy to
verify the solution because the analytical solution for a dislocation in a homogeneous anisotropic half plane
is known (Atkinson and Eftaxiopoulos, 1991; Lee, 1990). Cross-ply composite laminates are studied in this
paper. The elastic material properties for graphite/epoxy were taken from Salpekar’s paper (Salpekar, 1993)
and listed in Table 1. The fiber orientation 6° of the laminate is defined as the angle between the x; direction
and the laminate’s longitudinal direction. Also, x, is the normal direction of the laminate and the x; di-
rection is determined by right-hand rule. A 0°/90° half plane means that the top material (1) is 0° and the
bottom material (2) is 90°.

First, the convergence of the numerical integration is checked and the results for half plane A are listed
in Table 2. A 45°/45° laminate is used in the calculation. The free boundary is located at y = —1 and the
dislocation b = {1,0,0}" is located at zy = 0. Obviously, the stress components converge very well and
agree with the analytic solution closely.

Table 3 gives the comparison of the present solution with the analytic solution for half plane B. The
material is chosen to be 90°/90°. We checked the stress components of eight points surrounding a dislo-

Table 1

Material properties for graphite/epoxy laminate
Ep = 13445 GPa, Er = 11.03 GPa, Ex =11.03 GPa
GLT =584 GPa, GLN =584 GPa, GTN =2.98 GPa
ppr = 0.301, pupy = 0.301, ppy =0.49

L is the longitudinal direction (fiber direction); T, the transverse direction, and N, the normal direction.
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Table 2
Convergence of stresses for a dislocation in homogeneous anisotropic half plane A*
Stresses z=2x; +1ix, Number of Integration Points N Atkinson and Ef-
10 50 100 150 200 250 taxiopoulos
(1991)
1 1.6251 1.6333 1.6333 1.633 1.6333 1.6333 1.6333
021 5 0.2732 0.2471 0.2547 0.255 0.255 0.255 0.255
10 0.1009 0.0489 0.0613 0.0644 0.0652 0.0654 0.0655
1 —0.1536 —0.1536 —0.1634 -0.1634  —0.1634 —0.1634 —0.1634
on 5 0.0214 0.0214 0.0524 0.0521 0.0521 0.0521 0.0521
10 —0.0293 —0.0293 0.0142 0.0109 0.0096 0.0091 0.0089
1 —0.959 —0.9607 —0.9607 —0.9607 —0.9607 —0.9607 —0.9607
023 5 —0.1854 —0.1706 —0.1717 —0.1717 —0.1717 —0.1717 —0.1717
10 —0.0619 —0.0427 —0.0467 —0.0473 —0.0474 —0.0474 —0.0474

A Material: 45°/45°, H = 1; dislocation b = {1, 0, 0}" located at z, = 0.

Table 3

Comparison between present method and analytical solution of Atkinson and Eftaxiopoulos (1991) for half plane B*
z=1x +ix, Present Analytical solution

o11 012 022 o1 012 02

0.5-0.51 0.34 —0.1911 —1.9513 0.34 —0.1911 —1.9513
1-0.51 0.2674 1.4793 —0.3698 0.2674 1.4793 —0.3698
1.5-0.51 0.1905 —0.0981 1.2819 0.1905 —0.0981 1.2819
1.5 1.887 0 1.258 1.887 0 1.258
1.540.51 0.1905 0.0981 1.2819 0.1905 0.0981 1.2819
140.51 0.2674 —1.4793 —0.3698 0.2674 —1.4793 —0.3698
0.540.51 0.34 0.1911 —1.9513 0.34 0.1911 —1.9513
0.5 —0.9815 0 —1.9629 —0.9815 0 —1.9629

A Material: 90°/90°, and dislocation b = {0, 1,0} located at z, = 1.

cation b = {0, 1,0}T at zo = 1. The number of integration points, N, is 300. Again, we obtained excellent
agreements between these two solutions.

Next, let’s study the mixed-mode stress intensity factors for half planes A and B. Fig. 5a displays the
three modes of stress intensity factors for interfacial cracks with normalized crack length from 0.5 to 5. Fig.
S5a gives the mode-I stress intensity factor for interfacial cracks in half plane A of different material
combinations. The stress intensity factors are normalized as K = K/o/na, where ¢ is the external tensile
load. Fig. 5b and c gives the mode-II and mode-III mode mixity. The mode mixities s are defined as

1 [ Kn _1 [ K
Yy = tan”! <E>’ Yy = tan”! (71>7

and the ratio between mode-I components and mode-1II or mode-III components is expressed. It can be seen
in these plots that material combinations affect both the mode-I stress intensity factors and the mode
mixities. Homogeneous 90° material has the highest mode-I stress intensity factor K, 90°/0° and homo-
geneous 0° material give the lowest Kj. As for mode-II mode mixities, bimaterials have lower mode-II mode
mixities compared with their homogeneous counterparts. Only 45°/ — 45° and 45° homogeneous materials
display mode-III mode-mixities. Again, the bimaterial 45°/ — 45° has smaller mode-1II mode mixity than
the homogeneous materials. The non-zero mode-mixities indicate that cracks in bimaterial and homoge-
neous anisotropic are prone to propagate away from the original crack orientation.
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Fig. 5. Stress intensity factors for interfacial cracks with different lengths in half plane A.

Fig. 6 gives the stress intensity factors and mode-mixities for cracks parallel to the material interface.
The vertical distance between the crack tip and the interface is y,, as shown in Fig. 4a. We compare the
stress intensity factors of 0°/90° material with that of homogeneous 90° materials. The normalized crack
length is a/H = 2 and the vertical distance y, is normalized by the distance H between the free boundary
and the material interface. The stress intensity factor and mode-mixity curves for the homogeneous 90°
material are smooth, however, those for the 0°/90° bimaterial are not continuous across the material in-
terface and display drastic changes in the area very close to the material interface. When the crack is far
away from the interface, the stress intensity factors and mode-mixities for both materials are almost
identical. In order to give a clear picture of the changes of K; and ;; around the interface, a zoom-in on
Fig. 6a and b near the interface is shown in Fig. 6¢ and d, respectively. The powerwise increase/decrease in
K; as the cracks approach the interface was also observed by Atkinson and Eftaxiopoulos (1991) for cracks
in a bimaterial infinite plane. The stress intensity factors K7 for cracks in half plane B and infinite plane have
the same powerwise behavior, as shown in Fig. 7.

The effect of the interface on the stress intensity factors of cracks in half plane B is also studied and the
results are shown in Fig. 7. The material is chosen to be 90°/0° and the horizontal distance between crack
tip A and the free boundary is x, = a/4. Again, the mode-I stress intensity factor K is larger when the crack
is located in the 0° materials and has a big drop across the interface from 0° to 90°. Also shown in the plot
are K; for a 90°/0° infinite plane. These two curves are almost parallel indicating the presence of free
boundary increase K;. Unlike cracks in half plane A, cracks in half plane B remain mode-I dominated
despite the free boundary and the material heterogeneity.
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Fig. 6. Stress intensity factors for cracks parallel to the material interface in half plane A. y; is the vertical distance between the crack tip
and the interface. Crack length a/H = 2.
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To study how the stress intensity factors change with the crack length a, we fixed the crack tip at a
distance of x; = 1 from the free boundary and varied the crack length. The calculation results for interfacial
cracks in different materials are plotted in Fig. 8. Again the cracks are mode-I dominated and the variation
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the boundary.

in K; for different materials increases slightly as the crack length increases. Even for the longest crack
considered, the mode-I stress intensity factors for different materials are close to each other.

Finally, we investigated the influence of the free boundary on the stress intensity factors. The interfacial
crack length is kept at @ = 2. As shown in Fig. 9, the mode-I stress intensity factors are not very different for
all bimaterials and homogeneous materials and converge to the same value when the crack tip A is far away
from the free boundary. The mode-II stress intensity factors are small enough to be neglected.

4. Conclusions

Dislocation solutions in two different bimaterial half planes are derived based on the analytical dislo-
cation solution in a bimaterial infinite plane. The convergence and accuracy of the numerical integration
method are verified by setting the two materials to be identical and comparing the numerical results with
the analytical solution for the homogeneous case. The dislocation solution is then applied to calculate the
mixed-mode stress intensity factors for interfacial cracks or cracks parallel to the interface in both half
planes. Based on the calculation results, the following conclusions can be drawn:
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(1) For a half plane with free boundary parallel to the interface, i.e., half plane A, different material
combinations yield different stress intensity factors for cracks having the same geometries. Moreover, these
cracks could involve all three modes of fracture.

(2) In half plane A, the mode mixities of cracks at the interface are much smaller than those of cracks
located near the interface.

(3) For a half plane with free boundary perpendicular to the interface, i.e., half plane B, the cracks are
mode-I dominated and do not change very much with the material.

(4) The free boundary of half plane B only increases the mode-I stress intensity factors of the cracks but
does not make the cracks mixed-mode.

(5) In both half plane A and half plane B, the mode-I stress intensity factors changes abruptly across the
interface.

Acknowledgements

The financial support of the National Rotorcraft Technology Center through CERT, Grant NCC2-945,
of the Office of Naval Research, Ship Structures S&T Division, Grant N00014-90-J-1995, and of the Air
Force Office of Scientific Research, Grant F49620-98-1-0384, and the interest and encouragement of the
Grant Monitors, Dr. G. Anderson, Dr. T.K. O’Brien, Dr. Y.D.S. Rajapakse, Dr. Brian Sanders and Dr.
Ozden Ochoa, are all gratefully acknowledged.

Appendix A. Gaussian quadrature for singular integral equations

In this appendix, we give a general summary of applying Gaussian quadrature to solve the singular
integral equations with Cauchy kernel that are formulated in this analysis. The singular integral equations
for these crack problems have the following format:

1) = [  b(s)f (6, 5) ds. (A1)

I

where s and ¢ are the coordinates along the crack surface, and /, and /, are the crack tips. Also, f(¢,s) is a
singular function with Cauchy kernel, i.e.,

t—s
where F(t,s) is a continuous smooth function. First, Eq. (A.1) is normalized so that the crack is lying along

: (A2)

~_2tf(11+12) ~_2S7(11+12)
t= L = L1 (A.3)
Substituting Egs. (A.2) and (A.3) into Eq. (A.1) yields
o 12—11 1 1 . - lz—ll 1 + ~F(I7S) -
IH)=m 3 {E /—1 b(5)f(t,s)ds| =m 3 p /—1 b(3) pa— ds|. (A4)

The integral inside the bracket is a singular integral with Cauchy kernel and will be numerically solved by
Gaussian quadrature.

In Eq. (A.4), b(5) are the densities of the continuous dislocation array, which is employed to model the
crack. Different types of singularity of the crack tip dislocation is built into the dislocation density by
expressing b(3) as
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Table 4

Gaussian quadrature formulae for Cauchy kernels
Case o(3) S Ik n W
I (1-3)"" cos(n(2m — 1)/2N) cos(n(k/N)) 1 1/N
11 1=5"*1+5"*  cos(m2m/(2N + 1)) cos(n(2k — 1)/(2N + 1)) 0 2(1-35,)/(2N +1)
111 1-5""0+5"?  cos(n@m—1)/2N +1))  cos(n2k/(2N + 1)) 0 2(1+5,)/ N +1)
v (1—@)7? cos(mm/(N + 1)) cos(n(2k — 1)/(2N + 1)) -1 (1-8)/(N+1)

b(3) = w(3)b(5). (A.5)

The function h(5) is a smooth continuous function and w(5) is a weight function of the form:

o(s) = (1 —5)(1 +3). (A.6)

It can be proved (Muskhelishvili, 1953; Stroh, 1958) that the exponents y and p must be either +1/2 or
—1/2 for isotropic and anisotropic materials. It is also true for anisotropic bimaterials if the oscillation
index ¢ is neglected. As a result, four separate classes of singular integral equations arise, depending on the
behavior of the density b(5) at the end points. These are

Case I b(s) singular at both ends cy=-1/2, p=-1/2;
Case II  b(s) singular at § = —1 and bounded at §=+1 : y=+1/2, p=—-1/2;
Case III  b(5) bounded at § = —1 and singular at §=+1 : y=-1/2, p=+41/2;
Case IV b(s) bounded at both ends Cy=+1/2, p=+1/2.

(A7)

The general strategy is to employ the Gaussian quadrature formulae to reduce equations of the type in
the bracket of Eq. (A.4) to a set of N — n algebraic equations having the form:

1) =1 [ 0985 = sl () {56 (A8)
where
) L 45)+ L(1 - £) LT +5,)+ (1 =35,) i1 2 N
k= 3 N Sm = P 5 =1, Z,..., —n,
m=1,2..., N. (A.9)

The integer n depends on the combination of end point behavior anticipated, and is included in Table 4; W,
are the weight coefficients appropriate to the quadrature formulae employed. The coordinates of the in-
tegration points s, and the collocation points £, are also given in Table 4.

Applying to crack problems, case I is employed for crack closed at both ends, case II and III are for
surface break cracks such as edge cracks, and case IV is employed in this paper to solve the dislocation
densities along the traction-free boundary of the half planes.

A more detailed derivation of the numerical quadrature schemes for the solution of singular integral
equations can be found in Hills et al. (1996).

Appendix B. Evaluation of the stress intensity factors from the crack tip dislocation densities

The singularity of the crack tip stresses is contributed by the first term at the right hand side of Eq. (23),
as the second one is not singular. Since the first term f7;;(x1, X2, X10, X20) i exactly the same as the stresses of
the dislocation in an infinite plane, the relationship between the stress intensity factors and the dislocation



H. Huang, G.A. Kardomateas | International Journal of Solids and Structures 38 (2001) 3719-3734 3733

densities are the same for both infinite plane and half planes. Assuming that the crack is located at material
(1) or the interface, we substitute the derivatives of Eq. (8) into Egs. (6a) and (6b) and yield the stress
components due to a dislocation located at z,:

g1 = —2Re

1 1 1 1
MR
B<<Pv>>{ 4nM1 Db gu 0 +4nE“ g(l) ) }]7 (B.1a)

Opp = 2Re

1 1 1 1
B{ — MDY 4 —E, =1, 2, 3. B.1b

{4n ’ z) —Z(()lj +4“ ) ] ! n ( )
Suppose that the crack is parallel to the interface at a vertical distance y;, the stress intensity factors at

the crack tip x; = a are related to the stresses as

K = {Kuy, K1, K}’ = }llfj}l V2mr(a —x1)on(x1, ). (B.2)
In order to obtain the stresses due to the dislocation array along the crack surface, we replace b by
b (s)ds in Eq. (B.1b) and integrate with respect to s from s = —a to s = a. Substituting the stress com-

ponents into Eq. (B.2) gives

K(_xl = a) = {KH7K17KHI}T = lim 1/ ZTE(a _.X1)2Re
X|—a

a K(l)
B{iMWD“)/ b(s) g
4n aX1—S

[ 1
T /, E.(s) (x; —s) + (P, — P)y, dSH , (B.3)

where E, (s) are related to b""(s). If the crack is located away from the interface, i.e., y; # 0, the second term
in Eq. (B.3) is not singular as x; — s, and thus will not contribute to the crack tip stress intensity factors.
However, if the crack is an interface crack, i.e., y, = 0, then the second term is also singular. Using the Dirac
delta function, Eq. (B.3) can be expressed as

a K(l)
K(xi = a) = lim \/35{a ~m)2Re {41 i [0,
—a X1 — S

(v Z/ o H (B.4)

Introducing variable transformation x; = ta, and s = Sa, Eq. (B.4) becomes

B{ 41n ) lim V1 (N) ds

K(+1) = V2ma2Re

t—+1 t—=s

Loe) 3 im i /1 E,(g)ti_gdg}]. 8:3)

According to Hills et al. (1996), the limiting value of the first integral is mh(+1)/+/2. Similarly, the
limiting value of the second integral is nE,(+1)/v/2. Thus, we have the relationship between the stress
intensity factors and dislocation densities as following:

3
VI Re B{MDb +1)+00) Y E(+ } .

K(+1) = [Ku, K1, K] = —— (B.6a)
j=1

2
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Similarly, the stress intensity factors at the crack tip § = —1 are
3
V/Ta
K(—l) = [K][,K],K”]] = —T Re B MDb( — 1 + 5 yt ZEJ . (B6b)
j=1
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