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Buckling of sandwich wide columns

G.A. Kardomateasa ; ∗, G.J. Simitsesa;b, L. Shenb, R. Lia

aSchool of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, USA
bUniversity of Cincinnati, Cincinnati, OH 45221-0070, USA

Abstract

The paper deals with the theoretical prediction of buckling loads for sandwich columns with metallic and laminated facings
and foam or honeycomb core. The loading is a uniform axial compression, applied statically (very slowly) and suddenly
with constant magnitude and in1nite duration (step loading). The e2ect of length and boundary conditions is assessed and
results are presented for the following cases: for a cantilever column, a simply supported column and a clamped column, for
several lengths. Several 1ber materials are used in the laminated facings. Two types of core were examined: alloy-foam or
hexagonal glass=phenolic honeycomb. The facings are Boron=Epoxy, Graphite=Epoxy and Kevlar=Epoxy laminates with 0

◦

orientation with respect to the column axis and a metallic one made out of aluminum. These various materials are employed
to provide comparative data that can be used in design. Results, for the static case are generated by computer codes as
well as by the use of closed form theoretical solutions. For the dynamic case, results are generated by the DYNA3D code.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lightweight sandwich construction is of great in-
terest in the design and manufacture of spacecraft
and marine vehicles because of high speci1c sti2ness
and strength. In addition, sandwich construction of-
fers enhanced corrosion resistance, noise suppression
and reduction in life-cycle costs. There are several
issues and questions related to the use of sandwich
construction that require attention and answers. One
of the important issues is the prediction of buckling
loads, under either static or sudden load application.
For the static case, closed form solutions are derived
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for a symmetric sandwich column under axial com-
pression and for various boundary conditions. In ad-
dition, the solution suggested by Bazant and Cedolin
[1] is also used in the static analysis. Finally, static
critical loads are predicted by a 1nite element com-
puter code that includes transverse shear e2ects. The
utilized code is DYNA3D [2], which is a dynamic
three-dimensional code. The static critical load is ob-
tained by applying the load very slowly and comput-
ing the maximum displacement (an extremely small
transverse load is included in order to initiate bend-
ing). The critical load is the one for which the maxi-
mum transverse displacement becomes very large. In
addition, results are generated by the computer code
ABAQUS [3]. All predictions are computed and com-
pared to each other in order to establish con1dence
in the results. For the dynamic case, the axial com-
pression is applied suddenly and the Budiansky–Roth
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[4] criterion is applied in order to estimate the criti-
cal value. According to this criterion the equation of
motion is solved and the maximum amplitude of vi-
brations is recorded for constant values of the sud-
den load. The load is step increased, starting with a
small value, and the maximum amplitude of vibra-
tions is plotted versus the sudden load. When the
increase in amplitude is very large, we have a criti-
cal dynamic load. Note that in the case of sandwich
columns, we do not have dynamic instability through
escaping motion [5], but at certain value of the sud-
den load the maximum amplitude of vibrations starts
to become unacceptably large. For this dynamic case,
the FE computer code DYNA3D [2] is employed, and
critical loads are computed for the same facing ma-
terials as in the static case. From the comparisons
and computer simulation, several unexpected phenom-
ena are observed, which are discussed in later sec-
tions. The e2ect of boundary conditions and length are
assessed and several facing materials are employed.
They are: Aluminum, Boron=Epoxy, Graphite=Epoxy
and Kevlar=Epoxy with 0◦ orientation with respect to
the column length. A sandwich column consists of
two thin facings and a thick core made of foam or low
strength honeycomb.
Research into structural behavior of sandwich struc-

tures commenced in the late 1940s [6–9] but inten-
si1ed recently [10–13]. On the other hand interest in
dynamic stability commenced in the 1950s and it con-
tinues to the present [5,14,15].

2. Structural geometries

Consider a column of length L, depth c + 2h and
width B. The column is of sandwich construction,
symmetric about the midsurface and the depth of the
facings is h, while the depth of the core is c. The
boundary conditions are: (a) clamped-free-cantilever,
(b) simply supported at both ends and (c) clamped at
both ends. For the composite facings, all plies have 0◦

orientation with respect to the column axis. The ma-
terial properties are given below in Table 1.
Closed form solutions have been developed and

reported in Bazant and Cedolin [1] herein. According
to Bazant and Cedolin, the derived expression is ap-
plicable to cantilever, simply supported and clamped
(at both ends) columns. On the other hand the

expression derived herein is applicable to all bound-
ary conditions. In addition, in a few cases static
critical conditions were obtained by DYNA3D [2]
with a very slow application of the load, so as not
to induce dynamic response. A slight load imper-
fection was introduced and a critical static load was
approximated by observing the maximum amplitude
(deJection).
A static critical load was established when the de-

Jection was very large for small increment in the ap-
plied compression. Moreover, static critical conditions
were also obtained by ABAQUS [3], for several con-
1gurations.
The two closed form expressions are presented be-

low:

2.1. Reference 1 expression

The symbols used, herein, are not exactly those used
in Bazant and Cedolin [1].

Pcr = (EI)�k2cr

/[
1 +

k2cr(EI)b
GA1

]
; (1)

where

k2cr =




(�=2L)2 for cantilever columns;

(�=L)2 for simply supported columns;

(2�=L)2 for clamped columns:

Moreover,

(EI)� = E′
f (I1 + If ) (2)

and

(EI)b = E′
f I1;

where

E′
f = Ef =(1− �2f );

I1 =
h
2
(c + h)2B; If =

h3

12
B

and

�2f =

{
�2 for metallic facings;

�12�21 for composite facings:

Finally,

GA1 = Gc(h+ c)B: (3)

In the above expressions Gc is the core shear mod-
ulus, Ef the Youngs modulus of facing material, in
the column direction (E11 for composite facings) and
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Table 1
Material properties

Designation E11 E12 Density �12 �21 G13

(kPa) (kPa) (kg=mm3) (kPa)

AL 6061-T6 6:90E + 07 6:90E + 07 2:71E− 06 0:35 3:50E− 01 2:59E + 07
Boron=Ep B(4)5505 2:21E + 08 2:07E + 07 2:02E− 06 0.23 2:16E− 02 5:79E + 06
Kevlar=Ep 49Epoxy 7:59E + 07 5:52E + 06 1:38E− 06 0.34 2:47E− 02 2:28E + 06
Graph=Ep T300 5208 1:81E + 08 1:03E + 07 1:61E− 06 0.28 1:59E− 02 7:17E + 06
Alloy-foam 4:59E + 04 4:59E + 04 7:00E− 08 0:33 3:3E− 01 1:72E + 04
Honeycomb 3:90E + 05 3:20E + 04 0.25 2:05E− 02 4:80E + 4a

aThe geometric values used herein are: c = 25:4 mm, h= 2:54 mm, and L= 2032 and 6096 mm. The width is B= 76:2 mm.

the geometric dimensions are de1ned in a previous
section.

2.2. Present expression

In addition to the previous de1nitions, i.e., face
sheets of thickness h and extensional modulus, Ef ,
and core of thickness c, extensional modulus, Ec and
shear modulus Gc, we denote by Gf the shear moduli
of the face sheets. The width is uniform, B, and the
total cross-sectional area is denoted by A=B(2h+ c).
Since the section under consideration is symmetric,

the neutral surface is at the middle surface, and the
equivalent Jexural rigidity of the sandwich section,
(EI)eq, is

(EI)eq = B

[
Ef
h3

6
+ 2Efh

(
h
2
+
c
2

)2

+ Ec
c3

12

]
: (4)

Huang and Kardomateas [16] presented a solution
for the buckling and initial postbuckling behavior of
sandwich beams including transverse shear e2ects (for
a general unsymmetric construction). The linearized
di2erential equation for the beam is [16]

(EI)eq
d2�
dx2

+
(
�P
A MG

+ 1
)
P�= 0; (5a)

where � is the shear correction factor (its calculation
is discussed later), and MG is the “e2ective” shear
modulus de1ned by:
2f + c

MG
=

2f
Gf

+
c
Gc
: (5b)

Then, following the usual procedure solving the
critical load by using the general trigonometric so-
lution of Eq. (5) and imposing the relevant bound-
ary conditions (e.g. Simitses [17]) we can write the

critical load as

Pcr =
−1 +

√
1 + (4�(EI)eq�2cr)=A MG

(2�=A MG)
; (6)

where �crL=2� for a clamped–clamped and �crL= �
for a simply supported beam. For example, the critical
load for a clamped–clamped sandwich beam can be
written as

Pcr =
−1 +

√
1 + (16�(EI)eq�2)=A MGL2

(2�=A MG)
:

Now, regarding the shear correction factor, it is found
from shear energy equivalency [16]. Then, if we
de1ne:

a= h+
c
2
; b=

c
2
; Mc =

h
2
+
c
2
;

the shear correction factor is found as [16]

�= 2 MGABd; (7)

where

d=
E2
f

4(EI)2eqGf

[
a4h− 2

3
a2(a3 − b3) + 1

5
(a5 − b5)

]

+
E2
f

(EI)2eqGc

[
h2 Mc2b+

2
15
E2
c

E2
f
b5 +

2
3
Ec
Ef
h Mcb3

]
:

(8)

Notice that for a homogeneous part (i.e. same material
for face sheets and core), it can be proved that this
formula reduces to the simple and familiar value of �=
6=5. Also, notice that the shear correction factor given
in Ref. [16] is for a general unsymmetric construction
(di2erent properties of top and bottom face sheets).
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3. Dynamic buckling

There exist several approaches in establishing criti-
cal conditions for suddenly loaded structures (see Sim-
itses [5]). In the case of columns, the critical dynamic
load is estimated by employing the Budiansky–Roth
[4] criterion. Through this approach one applies sud-
denly (rapidly) a small (say one-tenth of the static crit-
ical load) load and through a 1nite element computer
code (in this case DYNA3D) solves the equations of
motion and records the maximum amplitude of vibra-
tions. He then step increases the value of the suddenly
applied load and repeats the procedure. He 1nally
plots maximum amplitude versus values of the sudden
load and when the amplitude of vibrations is becom-
ing large, then the corresponding load represents the
critical dynamic load for loads applied suddenly with
constant magnitude and in1nite duration (for details,
the interested reader is referred to Simitses [5]).

4. Results and discussion

Static critical loads are computed for several facing
materials, boundary conditions and column lengths.
To this end, the two closed form expressions, Eqs. (1)
and (6)–(8), are employed. In addition, DYNA3D
was employed by applying the load very slowly to es-
timate the static critical load. This approach was em-
ployed for very few cases, because the required com-
puter time is extremely large. Moreover, the classical
critical value was computed by the following formula:

Pcl =
C�2(EI)eq

L2
; (9)

where C = 1=4; 1 and 4 for clamped-free, simply-
supported at both ends and clamped at both ends, re-
spectively. This is shown only for comparison pur-
poses.
The DYNA3D study used hexahedral isoparametric

elements (8 node brick elements) and there were 3750
elements, of which 1500 elements were for the two
face sheets and 2250 elements for the core. Finally,
results are also generated by employing ABAQUS for
several geometries. For this study, 8 node brick ele-
ments were also used.
Table 2 presents buckling loads in Newtons, for the

cantilever column and for both static and sudden ap-
plication of loads. In this case the length of the column

is 2032 mm. The materials are: (a) aluminum facings,
(b) boron=epoxy facings, (c) graphite=epoxy facings
and (d) kevlar=epoxy facings. The laminated facings
consist of laminae with 0◦ orientation with respect to
the column axis. Five sources are used: Ref. 1, present,
DYNA3D-static, ABAQUS and DYNA3D-dynamic.
Ref. 1 results di2er from the ABAQUS results by
¡ 4% whereas the present results di2er by ¡ 2%.
However, the DYNA3D results are higher by almost
10% versus the ABAQUS results for the Kevlar=Ep
but are within 2% for all the other laminated fac-
ings. For the case of metallic facings, the ABAQUS,
DYNA3D and Ref. 1 results are within 3% of each
other but they are all higher than the Euler load (see
Table 3) by about 6%, whereas the present results are
the only ones that are lower than the Euler load (but
di2er by −12% from all the other results).
The dynamic critical loads seem reasonable and

suggest that the present and the computer static criti-
cal loads are reasonable (with the possible exception
of DYNA3D results for the Kevlar=Epoxy case). Note
that for the case of sudden loads of constant magni-
tude and in1nite duration, the dynamic critical load is
smaller than the corresponding static critical load (see
Simitses [5]).
Table 3 shows the e2ect of boundary conditions

and it depicts static critical loads for L = 2032 mm
and using various sources. One of the sources used to
compute static critical loads is Eq. (9). This was done
only for comparison purposes. It is expected that Eq.
(9) overestimates the critical load because it does not
account for transverse shear e2ects.
There are several observations that need to be

pointed out. Since Ref. 1 and DYNA3D results for
the cantilever column and metallic facings are larger
than Pcl, Eq. (9), then the present results are more ac-
ceptable. Moreover, it is seen from the results of this
table that the e2ect of transverse shear is more pro-
nounced as we move from the cantilever column to
the simply supported column to the clamped=clamped
one. One reason for this is that the e2ective simply
supported length decreases (EI remains constant)
and transverse shear e2ects are more pronounced for
shorter columns. Finally, it is seen that for the same
core material and geometry and for the same thick-
ness of the facings, the construction in going from the
stronger (higher static critical load) con1guration to
the weaker one is: Boron=Epoxy, Graphite=Epoxy, to
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Table 2
Buckling loads of sandwich columns for alloy-foam core in Newtons. Cantilever, L = 2032 mm

Unit Newton AL Boron=Ep Graph=Ep Kevlar=Ep
6061-T6 B(4)-5505 T300-5208 49Epoxy

Ref. 1 3192.05 7772.02 6618.52 3114.49
Present 2872.13 8183.58 6887.44 3139.48
DYNA3D (static) 3340.27 8230.00 6868.60 3495.02
ABAQUS (static) 3277.73 8086.45 6853.00 3197.38
DYNA3D (dynamic) 2868.96 7984.16 6560.80 3140.29

Table 3
Buckling loads of sandwich columns for alloy-foam core in Newtons, L = 2032 mm

Boundary Source AL Boron=Ep Graph=Ep Kevlar=Ep
conditions 6061-T6 B(4)-5505 T300-5208 49Epoxy

Cantilever Ref. 1 3192.05 7772.02 6618.52 3114.49
Present 2872.13 8183.58 6887.44 3139.48
DYNA3D 3340.27 8230.00 6868.60 3495.02
ABAQUS 3277.73 8086.45 6853.00 3197.38
Euler (Pcl) 3077.45 9850.58 8068.18 3384.92

S.S. Ref. 1 10; 107:70 18; 946:00 17; 126:90 9912.29
Present 9880.09 24; 482:50 21; 144:40 10; 692:60
DYNA3D Not available Not available Not available Not available
ABAQUS 10; 543:29 20; 215:10 18; 189:46 10; 340:02
Euler (Pcl) 12; 309:80 39; 402:30 32; 272:70 13; 539:70

C.C. Ref. 1 22; 051:50 29; 576:90 28; 399:60 21; 816:90
Present 28; 715:30 61; 982:10 54; 677:30 30; 695:50
DYNA3D 23; 700:01 25; 166:65 24; 999:98 21; 066:66
ABAQUS 22; 863:74 37; 311:03 36; 523:38 25; 291:58
Euler (Pcl) 49; 239:30 157; 609:00 129; 091:00 54; 158:70

Kevlar=Epoxy and Aluminum (virtually tied). If spe-
ci1c buckling strength is considered, Boron=Epoxy
and Graphite=Epoxy are virtually tied. They are fol-
lowed by Kevlar=Epoxy, which is better than Alu-
minum.
For the simply supported case, the present results

di2er from the ABAQUS results by a range of −6:3%
for the metallic facings to +21% for Boron=Ep
whereas the Ref. 1 results are always lower by −4:1%
for the metallic facings and Kevlar=Ep to −6:2%
for the Boron=Ep. The Euler load is higher than the
ABAQUS results by amounts ranging from a factor
of +16% for the metallic facings to +94% for the
Boron=Ep.
For the clamped=clamped case (Table 3), the

present results are higher than the ABAQUS results
by a range of +21% for Kevlar=Ep to +66% for

Boron=Ep whereas the Ref. 1 results are lower by a
range of −3:5% for the metallic facings to −22%
for Graph=Ep. At the same time, the DYNA3D re-
sults di2er from the ABAQUS by amounts ranging
from +3:6% for the metallic facings to −32% for
Boron=Ep. Note that the Euler load is higher than the
ABAQUS results by amounts ranging from a factor
of 2.1 for the metallic facings to a factor of 4.2 for
the Boron=Ep, i.e. by a very large amount.
Table 4 presents static buckling loads as com-

puted from Ref. 1, present, ABAQUS and Eq. (9),
for L= 6096 mm . It is clearly seen that for the lam-
inated facings, Ref. 1 and present analysis yield ap-
proximately the same results for a cantilever or simply
supported column.
For this length, the transverse shear e2ect is rather

small for cantilever and increases as we move to the
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Table 4
Buckling loads of sandwich columns for alloy-foam core in Newtons, L = 6096 mm

Boundary Source AL Boron=Ep Graph=Ep Kevlar=Ep
conditions 6061-T6 B(4)-5505 T300-5208 49Epoxy

Cantilever Ref. 1 384.673 1065.97 877.25 374.56
Present 339.8 1066.21 877.31 372.64
ABAQUS 341.94 1084.24 892.27 378.82
Euler (Pcl) 340.69 1094.51 896.47 376.10

S.S. Ref. 1 1491.39 3919.38 3272.28 1453.34
Present 1324.12 3983.13 3312.71 1451.91
ABAQUS 1344.18 4023.44 3353.95 1474.98
Euler (Pcl) 1367.76 4378.04 3585.86 1504.41

C.C. Ref. 1 5312.25 11; 848:30 10; 307:80 5191.22
Present 4878.61 13; 185:00 11; 213:60 5314.34
ABAQUS 4904.90 12; 498:59 10; 820:34 5335.51
Euler (Pcl) 5471.03 17; 512:10 14; 343:40 6017.63

clamped=clamped case. For this length also, as in the
case of L = 2032 mm, it is seen that for aluminum
facings, the present analysis yields a more reasonable
result than Ref. 1, since the Euler load, Pcl, must be
larger than the loads computed by the closed form
solutions.
For the cantilever case, in all cases the present re-

sults are within 2% of the ABAQUS results and al-
ways lower than the Euler load. However, the Ref.
1 results are 12% above the ABAQUS results and
higher than the Euler load for the case of metallic fac-
ings but are almost identical to the present results in
all other cases. Note also that the ABAQUS results
are slightly higher than the Euler load (by¡ 1%) for
both the metallic and the Kevlar=Ep facings. But the
Euler load is in general very close to the ABAQUS
results (within 1%) in the cantilever case. Similar ob-
servations can be made for the simply supported case
with the Ref. 1 results being again about 10% above
the ABAQUS results and above the Euler load for the
case of metallic facings, but now the ABAQUS re-
sults are always below the Euler load, and the present
results are within 2% of the ABAQUS results. In the
simply supported case, the Euler load is higher than
the ABAQUS results by no more than 9%.
For the clamped=clamped case (Table 4), the

present results are within about 5% of the ABAQUS
results whereas the Ref. 1 results are higher than the
ABAQUS results by 8% for the metallic facings case

but lower within−5% for the laminated facings. In all
cases the present results are closer to the ABAQUS
results. The Euler load is higher than the ABAQUS
results by a range of 11% (metallic facings) to 40%
(Boron=Ep facings).
Tables 5 and 6 give the critical loads for the

same geometry as in Tables 3 and 4 but with a honey-
comb core instead of alloy foam. The results in Table
5 lead to similar observations as with those in Table
3. In the cantilever case, of concern is the fact that
the ABAQUS results are above the Euler load for the
metallic (by about 12%) facings. The Ref. 1 results
are also higher than the Euler load for the metallic fac-
ings by about 9%. The present results are always be-
low the Euler load and, for the laminated facings, they
are the closest to the ABAQUS results. In the simply
supported case, as opposed to the Table 3 results, the
ABAQUS result is above the Euler load and the Ref.
1 result is close to the Euler load, for the metallic fac-
ings, whereas the present results are always below the
Euler load. But for the laminated facings all results
are within 5% of each other. For the clamped=clamped
case, the present results are above the ABAQUS re-
sults, which seem to be in general almost half way be-
tween the Ref. 1 and the present results, but the Euler
results are higher than the ABAQUS results by a range
of between 38% (Kevlar=Ep) to 120% (Boron=Ep),
i.e. by smaller amounts than the alloy foam case in
Table 3.
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Table 5
Buckling loads of sandwich columns for honeycomb core in Newtons, L = 2032 mm

Boundary Source AL Boron=Ep Graph=Ep Kevlar=Ep
conditions 6061-T6 B(4)-5505 T300-5208 49Epoxy

Cantilever Ref. 1 3382.48 9006.61 7493.22 3295.51
Present 3017.20 9127.89 7576.79 3308.11
ABAQUS 3475.13 9256.00 7696.36 3385.95
Euler (Pcl) 3098.52 9871.65 8089.24 3405.98

S.S. Ref. 1 12,300.60 28,454.00 24539.60 12,012.30
Present 11,261.30 30,940.80 26,220.00 12,276.20
ABAQUS 12,689.98 29,580.70 25,458.30 12,399.84
Euler (Pcl) 12,394.10 39,486.60 32,357.00 13,623.90

C.C. Ref. 1 36,086.40 61,831.10 56,900.30 35,462.30
Present 37,209.10 88,318.00 76,790.10 40,108.90
ABAQUS 35,154.29 71,211.13 66,801.18 39,195.60
Euler (Pcl) 49,576.30 157,946.00 129,428.00 54,495.70

Table 6
Buckling loads of sandwich columns for honeycomb core in Newtons, L = 6096 mm

Boundary Source AL Boron=Ep Graph=Ep Kevlar=Ep
conditions 6061-T6 B(4)-5505 T300-5208 49Epoxy

Cantilever Ref. 1 387.30 1086.40 891.03 377.05
Present 343.23 1086.32 891.71 377.17
ABAQUS 348.52 1104.88 906.95 383.39
Euler (Pcl) 344.28 1096.85 898.81 378.44

S.S. Ref. 1 1531.68 4210.44 3472.71 1491.57
Present 1360.58 4227.84 3486.70 1493.81
ABAQUS 1381.71 4295.92 3544.12 1518.27
Euler (Pcl) 1377.12 4387.40 3595.22 1513.77

C.C. Ref. 1 5861.42 14; 978:30 12; 598:10 5714.42
Present 5261.22 15; 425:50 12; 896:30 5758.52
ABAQUS 5336.79 15; 475:53 13; 004:55 5843.46
Euler (Pcl) 5508.47 17; 549:60 14; 380:90 6055.08

Regarding the results in the larger length case in
Table 6, in the cantilever case they are all within 2%
of each other except for the Ref. 1 result with metallic
facings, which is 11% above the ABAQUS result and
almost 14% above the Euler result. Of concern is again
the fact that the ABAQUS results are above the Euler
load in all cases by about 2%. But the present results
are all below the Euler load.
In the simply supported case (Table 6), again of

concern is the fact that the ABAQUS result is above
the Euler load for both the metallic and the Kevlar=Ep

facings, but in both cases by¡ 2%, whereas the Ref. 1
result is above the Euler load by 12% for the metallic
facings. The present results are below the Euler load
in all cases. Again, as in Table 4, with the exception of
the Ref. 1 result for metallic facings, all other results
are within 2% of each other.
Finally, in the clamped=clamped case (Table 6), we

1nd again (as in Table 4) that the present results are the
closest to the ABAQUS results in all cases and they are
always below the Euler load. For the case of metallic
facings, Ref. 1 predicts a critical load above the Euler
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load by almost 7%. Other than that, the Ref. 1 results
are close to the present results and the ABAQUS re-
sults, in general within 4%. The ABAQUS results are
below the Euler load in all cases and the di2erence is
¡ 13%.
The e2ect of transverse shear is signi1cant and can

most easily be seen by comparing the Ref. 1 and the
present results for the clamped–clamped case in the
case of alloy foam core and boron=epoxy face sheets.
In Table 3, for a column length of 2032 mm, the
Ref. 1 result is only 18.7% of the Euler load and the
present result is only 39.3% of the Euler load. For a
shorter column, this e2ect would be even more pro-
nounced. For example, for a column of 1270 mm long,
the Ref. 1 result would be only 8.2% of the Euler load
and the present result would be only 26.8% of the Eu-
ler load.
Since the Ref. 1 critical load formula is based on an

“Engesser”-type [18] derivation, whereas the present
critical load formula is based on a “Haringx”-type
[19,20] derivation, it should be mentioned at this
point that a study of column buckling for mono-
lithic composites from three-dimensional elasticity
which was done for transversely isotropic materials
by Kardomateas [21] and a corresponding one for
orthotropic columns [22], showed that the Engesser
formula would predict in general smaller values for
the critical load; therefore is expected to be the most
conservative, but not the most accurate, and indeed
the Haringx formula results were found to be in gen-
eral closer to the elasticity results. The complexity
of sandwich composites notwithstanding, this conclu-
sion is not contrary to the general observations made
in the present study (with the few exceptions noted
in the detailed discussion of the Tables).
For the limited number of dynamic cases consid-

ered, the procedure is to compute the vibration re-
sponse for various levels of the sudden load and plot
the system response (Fig. 1). Then, from these curves,
the maximum amplitude is plotted versus applied sud-
den load and the value of the load at which the maxi-
mum amplitude increases rapidly is called the critical
dynamic load (Fig. 2). The limited dynamic results
are shown on Table 2.
The dynamic critical load must always be smaller

than the corresponding static critical load. This fact
can be used in interpreting the accuracy of the com-
puted static loads. For Boron=Ep, cantilever col-

Fig. 1. Vibration response for cantilever column. Kevlar=Ep,
L = 2032 mm. Transverse displacement versus time.

Fig. 2. Maximum amplitude versus sudden load. Kevlar=Ep,
L = 2032 mm, clamped-free.

umn and L = 6096 mm, the computed critical load
(by DYNA3D) is 1045 N, which is approximately
3.4% smaller than the smallest static critical load (see
Table 4).
In closing, it is recommended that more work is

needed in analytically predicting the static critical
load. There is additional concern that the loads com-
puted by the codes ABAQUS and DYNA3D in some
cases di2er by a substantial amount and that these
calculations in some cases are above the Euler load.
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