
AIAA JOURNAL

Vol. 40, No. 11, November 2002

Buckling and Initial Postbuckling Behavior of Sandwich
Beams Including Transverse Shear

Haiying Huang¤ and George A. Kardomateas†

Georgia Institute of Technology, Atlanta, Georgia 30332-0150

An asymptotic solution is presented for the buckling and initial postbuckling behavior of sandwich beams.
The effect of transverse shear is included, and the shear correction is calculated from energy equivalency. The
asymptotic procedure is based on the nonlinear beam equation (with transverse shear included), and closed-form
solutions are derived for the critical load and for the load and midpoint de� ection and axial shortening vs applied
compressive load during the initial postbuckling phase. Illustrative results are presented for a few typical sandwich
construction con� gurations, in particular, with regard to the effect of face sheet and core material system.

Nomenclature
A = total cross-sectionalarea
c = subscript for the core
E = Young’s modulus
e = distance of the neutral axis of the section

from the core midline
.EI/eq = equivalent rigidity
f1 = subscript for the top face sheet
f2 = subscript for the bottom face sheet
G = shear modulus
NG = “effective” shear modulus of the section
L = beam length
P = axial force
Pcr = critical load
s = distance along the de� ected beam
V = shear force (normal to the de� ected beam axis)
v = vertical displacement
® = shear correction coef� cient
¯ = slope of the de� ected beam axis
°eq = equivalent for the section shear angle
µ = rotation of the cross section due to bending

Introduction

S ANDWICH structures have received considerable attention re-
cently, primarily because of their high speci� c stiffness and

strength properties.These structures are typically composed of two
thin composite laminated faces and a thick soft core made of foam
or low-strength honeycomb. Sandwich construction has been used
in aircraft, marine, and other types of structures.

Research into sandwichstructuralbehaviorand failuremodes can
be traced following World War II in a rather sporadic fashion but
intensi� ed in the1990s,especiallywith regardto propermodelingof
the core through high-order theories (for example, Kant and Patil,1

Hunt and Da Silva,2;3 Frostig,4 and Frostig and Baruch5).
There are still several questions that need to be addressed re-

garding the behavior of these structures, among them the issue of
buckling and postbuckling. Even in homogeneous beams, critical
loads can be overestimated if transverse shear is not included (for
example, Timoshenko and Gere6). In sandwich beams, this overes-
timation can be signi� cant due to the contributionof the core,which
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is expected to carry the shear and which has a very low modulus.
The effect of the transverse shear due to the relatively compliant
core on the postbucklingbehavior can likewise be signi� cant.

In the present work, a nonlinear beam equation including trans-
verse shear is used. The shear effect is accounted for a general un-
symmetric sandwich section (meaning face sheets not of the same
geometryand/ormaterial).A perturbationprocedureis subsequently
applied to obtain a closed-form solution for the initial postbuckling
behavior. Illustrative results are presented for two common sand-
wich constructions, namely, glass-polyester/polymeric foam and
graphite–epoxy/honeycomb.

Nonlinear Governing Equation for a Sandwich Beam
with Shear

Let us consider an elastic sandwich, initially straight beam in a
symmetricbuckledcon� gurationbetweensectionsi and j , as shown
schematically in Fig. 1. Initially, the beam is of length L and has
a uniform equivalent � exural stiffness, .EI/eq . [The experssion for
.EI/eq is given in theAppendixfor an arbitraryasymmetricsandwich
construction.]Elastic bucklingof the beamis conditionedby theend
restraintsand the magnitudeof the axial load P . In the buckledform,
the end moments Mi and M j D ¡Mi (assumed positive clockwise)
are set up.Becauseof the symmetry assumed,the equal and opposite
shearing forces Q, are zero (to satisfy overall equilibrium).

The moment m at a distance s is given by

1

½
D dµ

ds
D ¡

m

.EI/eq
(1)

where ½ is the radius of curvatureand µ is the rotation of the normal
to the cross section, measured positive clockwise.

From equilibrium,

m D Pv C Mi (2)

Now, the sandwich beam consist of a soft core of thickness c, for
example, a hardened polymeric foam or honeycomb and two stiff
faces (skins). The contribution of the longitudinal normal stresses
in the core is small comparedwith those in the skins. Consequently,
the shear stress is nearly uniform through the thickness of the core.
Because the skins are thin, the shear stresses in the core carry most
of the shear force, and the shear deformation of the core is very
important. The shear deformations can be taken into account by
relaxing the assumption that the plane cross sections remain normal
to the de� ected beam axis, that is, the slope ¯ of the de� ected beam
axis is no longer required to be equal to the rotation µ of the cross
section due to bending, the difference being the equivalent for the
section shear angle °eq [Timoshenko beam theory assumption (see
Ref. 6)]. If we assume that the stressesare distributeduniformlyover
the entire section A, then an equivalent shear angle can be de� ned
based on the “effective” shear modulus of the section NG , which is
de� ned from the compliances of the constituentphases:
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Fig. 1 Buckled sandwich beam.

. f1 C c C f2/= NG D f1=G f 1 C c=G c C f2=G f 2 (3a)

as

°eq D ¯ ¡ µ D ®V=ḠA (3b)

in which V rotates as the beam de� ects. Furthermore, ® is calcu-
lated in the Appendix for an arbitrary unsymmetric sandwich struc-
ture from strain energy considerations and takes into account the
nonuniform distribution of the shear stresses throughout the cross
section and the contribution of the skins. The equivalent rigidity
of the entire section, .EI/eq is also given in the Appendix for an
arbitrary asymmetric sandwich construction.

Using v to denote the vertical displacement,we can write

dv

ds
D sin ¯ D sin.°eq C µ/ (4)

Now, V is the component of the axial force P in the direction
normal to the cross section, that is,

V D P sin ¯ ’ P sin µ (5)

Assume that the shear strain is small, which is a reasonable as-
sumption for the bucklingand the initial postbucklingstates that we
are studying, substituting sin °eq D °eq, cos°eq D 1 and Eqs. (3) and
(5) into Eq. (4), we have

dv

ds
D °eq cos µ C sin µ D ® P

2A NG
sin2µ C sin µ (6)

When Eq. (2) is differentiated with respect to s, Eq. (1) is used,
and Eq. (6) is substituted, the governing nonlinear equation that
includes transverse shear becomes

.EI/eq
d2µ

ds2
C P

³
®P

2A NG
sin 2µ C sin µ

´
D 0 (7)

For buckling, we can use the usual assumption that µ is small;
therefore, sin µ ’ µ , and we can also replace ds with dx (inexten-
sional assumption).Then Eq. (7) becomes a lineardifferentialequa-
tion:

.EI/eq
d2µ

dx2
C

³
® P

A NG
C 1

´
Pµ D 0 (8)

Then, following the usual procedure for solving for the critical load
by using the general trigonometric solution of Eq. (8) and imposing
the relevant boundary conditions, for example, see Simitses,7 we
can write the critical load as

Pcr D
¡1 C

q
1 C 4®.EI/eq¸2

cr

¯
A NG

.2®=A NG/
(9)

where ¸cr L D 2¼ for a clamped–clamped and ¸cr L D ¼ for a simply
supported beam.

For example, the buckling load for a clamped–clamped sandwich
beam can be written as

Pcr D
¡1 C

q
1 C 16®.EI/eq¼ 2

¯
A NGL2

.2®=A NG/

Asymptotic Solution for the Initial
Postbuckling Behavior

Now, for studying the initial postbucklingbehavior, let us expand
sin µ according to the Taylor’s series sin µ D µ ¡ µ 3=6; then Eq. (7)
becomes (again replacing ds with dx for initial postbucklingstates)

.EI/eq
d2µ

dx2
C P

³
®P

A NG
C 1

´
µ ¡

³
2®P

3A NG
C 1

6

´
Pµ 3 D 0 (10)

We use the perturbationmethod to solve this nonlinear differen-
tial equation, that is, we expand the load P and the slope µ in the
neighborhood of the critical load, in terms of a small perturbation
parameter ². Thus, we set

µ D ²µ1 C ²2µ2 C ²3µ3 C ¢ ¢ ¢ (11a)

P D Pcr C ²P1 C ²2 P2 C ²3 P3 C ¢ ¢ ¢ (11b)

Let us also set the perturbation parameter ² to be the slope,
µ.L=4/; then we have

µ.L=4/ D ² D ²µ1 C ²2µ2 C ²3µ3 C ¢ ¢ ¢ (12)

which means that, for x D L=4, one has the additional conditions

µ2.L=4/ D µ3.L=4/ D ¢ ¢ ¢ D 0; µ1.L=4/ D 1 (13)

Because the beam is symmetrical, only the left half of the beam
needs to be considered. From the symmetry condition, we have
µ.L=2/ D 0; thus,

µ1.L=2/ D µ2.L=2/ D µ3.L=2/ D ¢ ¢ ¢ D 0 (14)

Furthermore, from the clamped boundary conditions, µ D 0 at
x D 0; therefore,

µ1.0/ D µ2.0/ D µ3.0/ D ¢ ¢ ¢ D 0 (15)

Insertingthe expansionequations(11a) and (11b) into the nonlin-
ear differential equation (10) and rearranging the terms according
to the order of ², one � nds the following sequentially solvable set
of linear differential equations:

For � rst order O.²1/,

.EI/eq
d2µ1

dx2
C

³
® P2

cr

A NG
C Pcr

´
µ1 D 0 (16a)

for second order O.²2/,

.EI/eq
d2µ2

dx2
C

³
®P2

cr

A NG
C Pcr

´
µ2 D ¡

³
2®Pcr

A NG
C 1

´
P1µ1 (16b)

and for third order O.²3/,

.EI/eq
d2µ3

dx2
C

³
®P2

cr

A NG
C Pcr

´
µ3 D ¡

³
2®Pcr P1

A NG
C P1

´
µ2

¡
µ

®
¡
2Pcr P2 C P2

1

¢

A NG
C P2

¶
µ1 C

³
2®P2

cr

3A NG
C

Pcr

6

´
µ 3

1 (16c)
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First Order
The � rst-order equation is the familiar linearized buckling equa-

tion. Denoting

¸cr D

s
® P2

cr

.EI/eq A NG
C

Pcr

.EI/eq
(17)

and applying the boundary condition (15), µ1.0/ D 0, we obtain the
solution for Eq. (16a) as

µ1.x/ D A1 sin ¸cr x (18)

Applying Eq. (14), µ1.L=2/ D 0, gives the critical load from

¸cr L=2 D ¼ (19)

By applying Eq. (13), µ1.L=4/ D 1, we � nd that A1 D 1. Therefore,
the solution for the � rst-order linear differential equation (16a) is

µ1.x/ D sin ¸cr x (20)

Second Order
The solution for Eq. (16b) after inserting Eq. (20) is

µ2.x/ D A2 sin ¸cr x C B2 cos ¸crx

C
P1

2¸cr.EI/eq

³
2®Pcr

A NG
C 1

´
x cos ¸crx (21)

Applying the boundaryconditions(13), (14),and (15), that is, µ2 D 0
at x D 0; L=4, and L=2, and using Eq. (19), one � nds that

A2 D 0; B2 D 0; P1 D 0 (22)

This leads to

µ2.x/ D 0 (23)

Third Order
Because P1 D 0 and µ2 D 0, the second-order linear differential

equation (16c) is simpli� ed as follows:

.EI/eq
d2µ3

dx2
C

³
®P2

cr

A NG
C Pcr

´
µ3

D ¡
³

2®Pcr

A NG
C 1

´
P2µ1 C

³
2®P2

cr

3A NG
C

Pcr

6

´
µ 3

1 (24)

Let us denote

C1 D 1

.EI/eq

³
2®Pcr

A NG
C 1

´
; C2 D 1

.EI/eq

³
2® P2

cr

3A NG
C

Pcr

6

´

(25)

Then, the solution for Eq. (24) is

µ3.x/ D A3 sin ¸cr x C B3 cos ¸crx C .C1 P2=2¸cr

¡ 3C2=8¸cr/x cos ¸crx C
¡
C2

¯
32¸2

cr

¢
sin 3¸cr x (26)

The constants A3; B3 , and the load P2 are found by applying
the boundary conditions (13), (14), and (15), that is, µ3 D 0 at
x D 0; L=4, and L=2, and using Eq. (19):

A3 D C2=32¸cr; B3 D 0; P2 D 3C2=4C1 (27)

Thus, the solution to Eq. (24) is

µ3.x/ D
¡
C2

¯
32¸2

cr

¢
.sin ¸cr x C sin 3¸cr x/ (28)

Complete Synthesized Solution
Now, the initial postbucklingsolution can be written as follows:

µ.x/ D ² sin ¸crx C ²3
¡
C2

¯
32¸2

cr

¢
.sin ¸crx C sin 3¸crx/ C ¢ ¢ ¢

(29a)

P D Pcr C ²2.3C2=4C1/ C ¢ ¢ ¢ (29b)

where C1 and C2 are de� ned in Eq. (25). If the external load NP is
known, for example, measured in an experiment, then the perturba-
tion parameter ² can be calculated from Eq. (29b) as

² D
r

4C1.P ¡ Pcr/

3C2
(30)

The verticaldeformationof the beam canbe obtainedfromEq. (6)
by expandingthe trigonometricterms and integratingthe slope, that
is,

v.x/ D
³

®P

A NG
C 1

´ Z x

0

µ.» / d» ¡
³

4®P

A NG
C 1

´ Z x

0

µ 3.» /

6
d»

(31a)

Substituting the asymptotic expression for µ.x/ from Eq. (29a)
gives the de� ection:

v.x/ D ²

³
®P

A NG
C 1

´
.1 ¡ cos ¸crx/

¸cr

C ²3

(³
®P

A NG
C 1

´
C2

32¸3
cr

µ
.1 ¡ cos ¸crx/ C .1 ¡ cos3¸crx/

3

¶

¡
³

4®P

A NG
C 1

´
1

6¸cr

"

.1 ¡ cos ¸cr x/ C

¡
cos3 ¸cr x ¡ 1

¢

3

#)

(31b)

The midpoint de� ection vm , which may be of interest in testing,
is

vm D ²

³
®P

A NG
C 1

´
2

¸cr
C ²3

µ³
®P

A NG
C 1

´
C2

12¸3
cr

¡
³

4®P

A NG
C 1

´
2

9¸cr

¶
(31c)

Finally, the shortening of the beam, by use of Eq. (6) after ex-
panding the trigonometric terms, is

± D 1

2

Z L

0

v 02 dx D
³

1 C ®P

A NG

´2 Z L

0

µ 2.x/

2
dx

¡
³

1 C
®P

A NG

´³
1 C

4®P

A NG

´ Z L

0

µ 4.x/

6
dx

C
³

1 C
4®P

A NG

´2 Z L

0

µ 6.x/

72
dx (32a)

which becomes, after substituting the asymptotic expression for
µ.x/ [Eq. (29a)],

± D
²2

4

³
1 C

®P

A NG

´2³
L ¡

sin 2¸cr L

2¸cr

´

C ²4

"³
1 C ®P

A NG

´2
C2

64¸2
cr

³
L ¡ sin 4¸cr L

4¸cr

´
¡ 1

6

³
1 C ®P

A NG

´

£
³

1 C 4®P

A NG

´³
3L

8
¡ sin 2¸cr L

4¸cr
C sin 4¸cr L

32¸cr

´#
C ¢ ¢ ¢

(32b)
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For higher accuracy, the sixth-order term can be added, which is

C ²6

(³
1 C ®P

A NG

´2
C2

2

4:83:¸4
cr

³
L C sin 2¸cr L

4¸cr
¡ sin 4¸cr L

4¸cr

¡
sin 6¸cr L

12¸cr

´
¡

³
1 C

®P

A NG

´³
1 C

4®P

A NG

´
C2

8:48¸2
cr

£
³

2L ¡
sin 2¸cr L

2¸cr
¡

sin 4¸cr L

2¸cr
C

sin 6¸cr L

6¸cr

´

C 1
72

³
1 C 4®P

A NG

´2µ
5
6

³
3L

8
¡ sin 2¸cr L

4¸cr
C sin4¸cr L

32¸cr

´

¡ sin5 ¸cr L cos ¸cr L

6¸cr

¶)

(32c)

Discussion of Results
For an illustrationof the results from the precedinganalysis, con-

sider a sandwich beam with (in millimeters) f1 D f2 D 4 and c D 20,
that is, of total thickness h D 28 mm and of width w D h. Two types
of core were used: 1) a PVC core with (in mega pascal) Ec D 93 and
Gc D 35 and 2) a honeycomb core with Ec D 2000 and Gc D 460.
The corresponding face sheets were 1) E-glass/polyester unidi-
rectional with (in gigapascal) E f 1 D E f 2 D 26 and G f 1 D G f 2 D 3
and 2) graphite–epoxy unidirectional with E f 1 D E f 2 D 140 and
G f 1 D G f 2 D 5. In the results presented, the case of no transverse
shear effect can be treated by simply setting ® D 0.

Figure 2 shows the critical load Pcr normalized with the Euler
load PEul D 4¼ 2.EI/eq=L2 for a beam length over thickness ratio
L=h, from 10 to 50. It is seen that the normalized critical load is
lower for the glass-polyester/PVC material system, the difference
between the two material systems being signi� cant, especially at
smaller L=h ratios. Notice that if transverse shear is not included
then Pcr=PEul D 1.

The initial postbuckling results that follow are produced for a
beam lengthover thicknessratio L=h D 20. Figure 3 shows the mid-
point de� ection vm , and Fig. 4 shows the axial shortening ±, both
normalized with the beam length, vs the applied load P=Pcr for the
two material systems. Both displacements are higher for the glass-
polyester/PVC case. It can also be seen that if transverseshear is not
included, these displacements can be substantiallyunderestimated.
Finally, because the solution presented is an asymptotic solution,
the results would tend to be less accurate as we move away from
the critical point, that is, at the higher P=Pcr values, but, of course,
additional terms of the expansioncan be derived in a similar manner
and, therefore, increase the accuracy.

Fig. 2 Critical load, Pcr/PEuler , vs beam length over thickness L/h, for
the two material sandwich systems; if transverse shear is not included,
the critical load is the Euler load for both materials.

Fig. 3 Midpoint de� ection, vm /L, vs load P/Pcr during the initial
postbuckling phase, for the two material sandwich systems (graphite–

epoxy/honeycomb and glass-polyester/PVC).

Fig. 4 Axial shortening, ±/L, vs load P/Pcr during the initial postbuck-
ling phase for the two material sandwich systems.

Conclusions
A closed-form solution is presented for the buckling and initial

postbucklingbehavior of sandwich beams, including the transverse
shear effect. The solution is derived by applying the perturbation
procedure on the nonlinear beam equation. Results for the critical
load and the midpoint transversede� ection and axial shortening vs
applied load indicate the signi� cance of the face sheet/core material
system, which is re� ected in the transverse shear effect.

Appendix: Transverse Shear Correction Factor
An unsymmetric sandwich section is shown in Fig. A1. The sec-

tion consists of two face sheets of thickness f1 and f2 , extensional
moduli E f 1 and E f 2, and shear modul G f 1 and G f 2, respectively.
The core, of thickness c, has an extensionalmodulus Ec , and shear
modulus Gc . The width is uniform, w.

With respect to the reference axis y through the middle of the
core, the neutral axis of the section is de� ned at a distance e, as

e D
E f 2 f2

E f 1 f1 C E f 2 f2 C Ecc

³
f2

2
C

c

2

´

¡
E f 1 f1

E f 1 f1 C E f 2 f2 C Ecc

³
f1

2
C

c

2

´
(A1)
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z
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Ef2,Gf2

Ec,Gc

Fig. A1 Section of an unsymmetric sandwich beam.

and the equivalent � exural rigidity of the sandwich section .EI/eq is

.EI/eq D w

"
E f 1

f 3
1

12
C E f 1 f1

³
f1

2
C

c

2
C e

´2

C E f 2
f 3
2

12

C E f 2 f2

³
f2

2
C

c

2
¡ e

´2

C Ec
c3

12
C Ecce2

#
(A2)

The shear stress can be written in terms of the shear force V .x/
in the form

¿.x; z/ D V .x/q.z/

Also, due to the sandwich construction, G D G.z/; therefore, the
shear energy is

w

Z Z
¿ 2.x; z/

2G
dx dz D w

2

Z
V 2.x/

µ Z
q2.z/

G.z/
dz

¶
dx

Now, assume that the shear stresses are distributed in a uniform
fashion over the entire section A, then the correspondingequivalent
shear stress and strain are

¿eq D V .x/=A; °eq D ®V .x/=ḠA (A3)

where ® takes into account the nonuniform distribution of shear
stressesdue to the sandwichconstructionthroughouttheentire cross
section, and the shear strain is based on the effective shear modulus
of the sandwichsection NG de� ned in Eq. (3a) froma rule-of-mixtures
calculation on the compliances of the constituent phases (because
a uniform shear stress is assumed in the de� nition of the shear cor-
rection). This de� nition of NG is also compatible with usual practice
regarding effective shear moduli, for example, see Tsai.8 However,
note that what actually enters into the theory is the ratio ®=.ḠA/;
thus, it would not matter if the shear strain expressionwas based on
an effective shear modulus de� ned in a different way because then
the shear correctionfactor would be differentbut the ratio the same.

Then, the energy due to shear is

A

Z
1

2
¿eq°eq dx D ®

2ḠA

Z
V 2.x/ dx (A4)

therefore,

® D ḠAw

Z
q2.z/

G.z/
dz (A5)

The shear stresses, from simple bending theory, are as follows.
Upper face sheet, z < 0:

¿ f 1.z/ D
V

.EI/eq

E f 1

2

"³
f1 C

c

2
C e

´2

¡ z2

#

Core, z < 0:

¿c.z/ D
V

.EI/eq

(
E f 1 f1

³
f1

2
C e C

c

2

´
C

Ec

2

"³
c

2
C e

´2

¡ z2

#)

Core, z > 0:

¿c.z/ D
V

.EI/eq

(
E f 2 f2

³
f2

2
¡ e C

c

2

´
C

Ec

2

"³
c

2
¡ e

´2

¡ z2

#)

Lower face sheet, z > 0:

¿ f 2.z/ D
V

.EI/eq

E f 2

2

"³
f2 C

c

2
¡ e

´2

¡ z2

#

Therefore, if we de� ne for i D 1; 2,

ai D fi C c=2 C .¡1/i C 1e; bi D c=2 C .¡1/iC1e

ci D fi=2 C c=2 C .¡1/i C 1e

then the shear correction coef� cient is found from Eq. (A5) as

® D ḠAw
X

i D 1;2

E2
f i

4.EI/2
eqG f i

µ
a4

i fi ¡ 2
3

a2
i

¡
a3

i ¡ b3
i

¢
C 1

5

¡
a5

i ¡ b5
i

¢¶

C
E2

f i

.EI/2
eq Gc

µ
f 2
i c2

i bi C 2

15

E2
c

E2
f i

b5
i C 2

3

Ec

E f i
fi ci b

3
i

¶
(A6)

For a homogeneous part, that is, same material for face sheets
and core, the calculations reduce to the simple value ® D 6

5 . This
coincides with the classical results � rst derived by Goens9 and later
reintroducedby Reissner.10
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