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H. Huang1 Should an interface crack between the layers of the composite face-sheet or between the
Post-doctoral Fellow core and the composite face-sheet of a sandwich beam/plate exists, local buckling and
o possible subsequent growth of this interface crack (delamination) may occur under com-
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Introduction (e.g., Kant and Pat{l9], Hunt and Da Silvd10,11], Frostig[12],
and Frostig and Baruchl3]). Recently, there have been many

Delaminations(layer interface cracsconstitute a common contributions presented at symposia dedicated to sandwich struc-

failure phenomenon in laminated composites and they are m

ilv introduced f - t loads. Th delaminati es, e.g. Rajapakse et gl4].
easlly introduced from Impact loads. 1hese delaminations rn"?‘yAIthough these high-order theories are expected to render most
deteriorate the performance of the structure under compressjy

loading(e.g., Yin et al[1] and Simitses et al2]). A large number €turate results, they involve considerable effort in addressing the

. ’ o : complexities of the formulation of the problem of post-buckling
of studies on the behavior of delamination buckling and posit geaminated beams, and therefore, in the present work, a non-
buckling in composites have been carried out by many researgiear heam equation including transverse shear, properly formu-
ers, e.g., Chai et a[3] by using a one-dimensional model, Whit-|ateq for an unsymmetric sandwich sectiGneaning face sheets
comb [4] and Shivakumar and Whitcomfb] by using finite not of the same geometry and/or material used to model the
elements and Rayleigh-Ritz analysis, Kardomateisby con-  gejaminated, substrate, and base parts. The same approach can be
ducting monotonic compressive tests, Kardomaf@ady using ysed to study either a delamination within the face sheet or a
elastica theory to account for large deformations during posfepond at the interface between the face sheet and the core.
buckling, Kardomateas et 48] by studying both experimentally
and analytically the fatigue growth of delaminations during cyclic
compression, etc. ]

Although the general principles are not very different, delamFormulation
nation failure in sandwich structures is just beginning to be ex- G ina Equati d Bound Conditi Let
plored in detail. In this regard, differences in the behavior of q\éernlng qu_arllobnS an ﬂounhag d or_ld |h|ons. et us
delamination buckling and post-buckling within a sandwich strucc-??v‘f‘l'o ?erlcaessir:aevtvslcof tﬁii?ﬁe%@ Zr:]%tf ’ thgywlsizrgl ﬁ?gjﬁé’?g
21 1

ture from that of a laminated composite structure arise due to tﬁﬁd E;,, and shear modul;, andG,,, respectively. The core,

fact that the substrate in a delaminated sandwich Strucwreeﬁ'thicknessc, has an extensional modulls, , and shear modu-

cludes a much different kind of material, namely a transvers : - ; .
. ' s G, (Fig. 1). The delamination, of length& is symmetricall
flexible core made of foam or low strength honeycomb. To th'l%catéof a? a)distance from the. top. gver the ):egion of t}/]e

extent, the contribution of the shear stresses and shear defo”ﬁ‘é\émination the sandwich beam consists of two parts: the

) . . Y&laminated layer of the upper face shéeiferred to as the
should _be mclude_d in the form_ulanon. . “delaminated part,” of thicknessh) and the part below the
A typical sandwich structure is composed of two thin Compos"@elaminatior(“substrate part,” of thicknes$, —h-+c+ f,, which

laminated faces and a thick soft core made of foam or loW| des the core and the lower face sheBhe region outside the
strength honeycomb. Due to its exceptional properties, mai

X ) - - amination is referred to as the “base part” and consists of the
high stiffness and strength with little resultant weight penaltyniire section of the sandwich beam. ie.. of thicknéss c
sandwich structures have been used in aircraft, marine, and Oth_Eﬂ’zl We shall also denote the base pért wi‘th 1, the delaminated
types of structures. Research into sandwich structural behavigiit with 2, and the substrate part with 3. Let us also assume that
and failure modes can be traced following World War Il in a rathehe peam is clamped-clamped.
sporadic fashion but intensified in the 1990s, especially with re- The characteristic of sandwich construction is that the neutral
gard to proper modeling of the core through high-order theorigsis for the base and the substrate parts is in general no longer at
the middle of the corresponding sections. With respect to a refer-
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Part ! h f, 3
"’}h ‘ + +E C3+Ece+E e +Es,f, E—e i (2c)
_‘_ T c 12 cv 3 f299 12 f2 2 3] -
1 . . . . . .
11.. B(as)e Sugme éals)e The nonlinear differential equations including transverse shear
Part Part Part _L for the three parts of the sandwich beam-pl&ig. 1), namely the
L base part(1), delaminated part2), and substrate par3), are
/;/ T (Huang and Kardomate&45])
' f;
— !_x;x3 ? d?g P .
X Di—+P —sin 26+sin6 | =0,
ds® | 2AG,

Fig. 1 Definition of the geometry for a delaminated sandwich . . . .
J g y which, after Taylor series expansion of the girbecomes

beam/plate
d?6,(x) [ e P? 2aiP? P
i >—+ ——+P;| 6i(x)— —+ — | 63(x)=0,
dx; AG; G 6
fa

edEnn(f—h)+ Ece+ Enafa]~Euafa| £+ 5| ~En(fa=h) =123 (@)
f—h ¢ where 6;(x) is the rotation of the normal to the cross sectibn,
x( 12 + E)' (1b) is the bending rigiditya; is the shear correction factd®; is the

axial load,A; are the cross-sectional areas &ds the “average”
Moreover, while for the delaminated layer, which is homoge’iheaf modulus of each part, calculated from the compliances of
neous, the bending rigidity per unit width is the constituent phasg¢s5]

o h (25) fitc+f, f; Lc. f, Gt
2= Ef175, a, Y Tt Tt 2= 0415
12 G, G Ge Gp
for the base part, the equivalent flexural rigidity of the sandwich _ . _
section per unit width, igFig. 2) =(firc+fw; Ay=hw (30)
f3 fl C 2 f3 fl_h+c+f27f1_h+ c N fo
Dl—Ef112+Eflf +2+e1 +Ef212+Ef2f2 63 Gfl GC sz’
fo c |2 ¢ Ag=(fy—h+c+fpw. (30)
X|ot+5—e) + 612+E cel, (2b) CR 2
The shear correction factors can be found in Huang and Kardo-
and for the substrat@again, per unit width mateaq 15]. For the base pafil),
f
ll +h/2 B Eqe Mo
e 7 S L " L e -___NAQL<_§
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Fig. 2 Force and moment resultants at the tip of the delamination
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_ ?i 1 Substituting Egs(11) and (12) into Eqg. (3) and (4)—(10) and
a1=G,Aw D, —[ai"fi —-a¥a’-b’)+ =(a’— bf)} rearranging the terms based on the ordef, efe obtain separately
i=1 i S the equations and boundary conditions for the pre-buckling, buck-
ling, and initial post-buckling problem. The asymptotic expansion
(3d) s an efficient way of deriving closed-form solutions for the initial
post-buckling behavior and has also been used previously by Kar-
domatea$5] in the study of delaminations in monolithic compos-

+T2’ f22b+2E2b5+2Ef b}
DG, | T sEZ Y T3 E, ¢

h S X . - !
where ites in conjunction with the elastica theory.
c . c .
a=f+=+(—1)""te;; b=c+(—1)"te; Pre-buckling State, O(£°%). The major characteristic of the
2 2 pre-buckling state for a sandwich section is that under uniform
£ c compressive strain there are nonzero bending mom@stop-
c==+-+(-1)"te, i=12. (33 posed to a monolithic one in which the bending moments are
2 2 zerg but zero bending deflections.
Notice that since the delaminated part is homogenees,6/5, Under a uniformly applied compressive stradg, the resultant

and for the substrate partg is found from (31,e) by substituting forces(per unit width for the base part1), delaminated pait?),
f,—h in place off;, andDs, Az, Gy, e in place ofD,, A;, @nd substrate pa(8), are(Fig. 2

G, e;. PO = eo(E¢yf 1+ EcCt Eqof 16a
The way the geometry was configured, gives the following con- 1= co(EnfitEe r2f2), (162)
ditions atx;=0: P)=eoEqh; PY)= e[ Eq(fy—h)+Ecc+Eqofs).
6,(0)=0, i=1,23. 4) (160)
The above condition is valid fdr=1 because of the clamped-end Thez pre-buckling momentéper unit width) are then found as
and fori=2,3 because of symmetry. (Fig. 2
Furthermore, a kinematic condition of common slope between c
the different parts at the section where the delamination starts or M{D= eq| Efyfy + 5 +e;|+Ecce
ends reads
—a)=0.(—a)=fa(—a)= f, ¢
O1(L—a)=0,(—a) = 05(—a)= b, (5) CEuf, ( 2 E,el) S MO0 (7

The force and momenabout the neutral axis of the base part
equilibrium conditions aréFig. 2)

MO = e Eq1(F,—h) _h+c+ +E
P,=P,+Ps, (6) 3 =€o| Ena(f— 26 cC€s
c h f2 c
Mi—My—M3z—P,| i+ §+el_§ +P3(es—e)=0. (7) —Efzfz 2—e3 . A7)
Finally the axial displacement continuity condition at the tip A These pre-buckling forces and moments satisfy identically the
(Fig. D is force and moment equilibrium equatigabout the neutral axis of
A A 8 the base part Eqgs.(6) and(7). Furthermore, since a state of pure
Uz=Us, (®) axial compressive strain exists without bending deflections, the
where compatibility of shortening, Eq8) is also satisfied.
N P,a h Buckling (First-Order) Equations, O(£Y). From (3) and
U2=§ 050x%,+ ﬁJr 9A§, (9) (11,12, the first-order differential equation for the three parts is
d26M(x) [ P2
Aot (7 p2wes Psa — 2( =+ ——+PO | oM (x)=0, i=1,2,3
372 ) L B [En(fi—h)+Ecc+Epfow dx; AG,
(189)
— gA( es+ ; +f,— h) . (10) and the corresponding boundary conditions fr@nare
M0)=0, i=1,2,3, (1®)

Asymptotic Expansion. Now, let us expandP; and ¢; as
and from(5),

Pi=PO+ P+ 2P 4 3p3ly (11)
o(L-a)=61(—a)=0(—a)=0=1. (1%
0,(x) = £60(x) + E6P0x) + £6000)+ ..., (12) o (e ) ? e ’ %
where the(0) superscript corresponds to the pre-buckling state, The first-order moment equilibrium fror) is
the (1) to the buckling state and tH@), etc., to the post-buckling dg(l) d0(21) d6(31)
state. Also, let us séf to be the common slope of the section at Dy—/—— ax 2 4%, 3 e
X1 2 3

the delamination tip A, i.e., x;=L-a Xz=-a

o y y —PO| fyt+ o +e— 5| +PP(es—e)=0,  (1&)
From (5) and (12), this gives the additional conditions 2 2
0(11)(|__a):1; 052)(|__a): 053)“__&): ...=0, (14) and the first-order force equilibrium,
and O R (189
gi(l)( —a)=1; gi(Z)( —a)= gi(S)( —a)=...=0, i=2.3. Finally, the first-order compatibility equation fro(8) becomes,

(15) sincedP=1,
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Fig. 3 Critical strain versus delamination length for the case of a glass-
polyester /PVC sandwich composite

P{a c PMa h L, a . a
—|leg+z+fi—h|=—"—+ . P -p{M
[Efl(fl_h)+ECC+ Efzfz]W 2 Efth 2 Efth [Efl(fl_h)+ECC+ Efzfz]W
(189) _ [DiNicoth(L—a)+D,\,coth,a+Dshscothzala
Let's set - bl 1 c h
- Efl w( T+ §+el_5
a;P;
A= \/ . P§°>) / D, =123 (19) (23)
A G; By comparing(18g) and(23), we can see that the left-hand side

of (23) can be eliminated. Thus, we obtain the following charac-
where P, P and P{") are given in(16) in terms of the teristic equation:

uniform compressive straig,. Then, the solutions for Eq§18a) DX+ COtAS(L—a)+ Dshs COtA-a+ Da\aCOth-ala
that satisfies the boundary conditiofisb), is [Dihs l ) 272 2 373 gl

c h
Ehw| fi+ -+e— =
oW=CWsin(\x;), 1=1,2,3. (20) T2 T 2)
. c h
Now, the constant€{"), c{), C{) are determined from the +(e3+ S _) =0. (24)
common slope Eq18c), as 2 2

Equation(24) is a nonlinear algebraic equation which can be

cM=1/sinny(L—a); CM=—1/sinn,a; C{Y=—1/simza. solved numerically for the critical straig, (or critical load from
(21) (16). In the numerical procedure, a solution is sought near the

Euler buckling strain of the delaminated layer, which dg

The characteristic equation is found in termsegfy eliminat- = 7?h?%/(12a?).
ing P{, PSY, andP§M from the previous equations. This is done |jtial Post-buckling, Second-order Equations, O(£2).
as follows. o From (3) and (11,12, we obtain the second-order differential
The moment equilibrium Eq18d), becomes equation
(2) (0)2
DAy cOtA;(L—a)+D,\, COtA,a+ Dskg COtAza d?0i2(x) [ &P}
1Ny 1 27\ 2 2 3A3 3 D, i . LA e '_ +Pi(0) t9i(2)(xi)
L c h, dx AG,
=Pl f1+ = +e,— = | —PP(es—ey). (229)
2 2 20,POPM)
. R . =—| ———=—+PP oM (x), =123
By using the neutral axis definitiorida) and(1b), we obtain AG;
P h) Eqh (25)
€= €= T 5 € 2 [Ery(f,—h) T EcctErpfo]’ and from(4) and (14,15,
(220) 6(0)=0, i=1,2,3 (2&)
therefore(22a) becomes oP(L—a)=6P(—a)= 07 (—a)=0. (2&)
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Fig. 4 (a) Comparison of the two material sandwich systems with regard to

the delamination midpoint deflection during the initial post-buckling phase. (b)
Comparison of the two material sandwich systems with regard to the midpoint
delamination-substrate opening during the initial post-buckling phase.

The second-order moment equilibrium fraid is Finally, the second-order displacement compatibility fr(@n-

dagz) d0(22) d0(32) (10) and (11,12 IS

— D —
1 2 3
Xm Xx,=L-a dXZ Xy,=—a dX3 Xg=—a
(2)
c h 1 (0 2 Pi’a
—_p®@ _ __ @p —a)— — (1)
PO\ fit5+e 2)+P3 (es—€;)=0, (27) > ffa% (Xg)dxg+ WIE (T,—M T E.c+Eryf,]
and the second-order force equilibrium is 1 [0 a PPa

PR+ PO=pR). 28) =3 J:aez (X2)dXp+ E.wh (29)
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Fig. 5 (a) Comparison of the two material sandwich systems with regard to

the delamination load during the initial post-buckling phase.
the two material sandwich systems with regard to the substrate load during the
initial post-buckling phase.

The general solution for the second-order differential &)

is

6(x;)=C? sin\;x; + B?) cos\,;

1
p)

2a;P®
——+1

AG,

The constant8(?) are zeros due to the boundary conditions

(26a),
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and

(b) Comparison of

B@=0, i=123. (31)
Applying the conditiong(26b), we can find the constanG(®
as
p 2a,P?
CMx cosnix;.  (30) cP=— —1 cL-a)cotry(L—a)| ——+1],
2)\1D1 AlG]_

(32a)
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Fig. 6 Effect of the length over core thickness aspect ratio on the midpoint
delamination deflection during the initial post-buckling phase for glass-

epoxy /polyester
p(1) 24 PO Comparing(34) and(33), we can eliminate the left-hand side of
Cc@=— ' cWacotr;a L4, i=23. the latter equation, which contains the second-order forces, and,
2\D; AG, by using also(32), thus obtain one equation for the first-order
(320) forces, i.e.,
; i 1 sin2\za
Now the displacement compatibility E€R9), becomes azp(zl)+a3p(31)=z[C§1)2( a— 2}\33 7C(21)2
pR_2 __p@ a c h
Ef]_Wh W[Efl(fl_h)+ECC+Ef2f2] sin 2)\2a Eleh fl+§+el_§
. . x| a— ,
= E C(31)2( a— M _C(21)2( a— M . (33) 2\, a
3 2\, (35)
The moment equilibriunt27), by substituting the second-order Where
deflections(30) and again the relationship for the neutral axes of ) [ 24.plO (L—an
a -a
the substrate and the base p@2b), becomes ai:_l l_l +1 ] coshy(L—a)— — 1
2)\1 A].Gl S|n)\l(|_7a)
PR _p@ 2 } cM [ 2a;P(® a
Erawh W[E1(f1—h) +Ecc+Eqafs] — ——+1||———cos\a|, i=23.
2M 1 AG sin\;a
c h
Erawh| f1+ E+91— 5) The second equation for the first-order forces is the first-order
% compatibility Eq.(18g).
a The system of these two linear equatiof®5) and (18g), can
Do o be solved for the first-order forceBS" and P§V .
@) Ci'Pi [ 2a4P; The solution for the higher-order terms can proceed in the same
:Dl Cl )\1 COS}\l(Lfa)‘i“ 2)\1Dl A 6 +1 fashion.
1¥1

The first-order applied load{" is in turn found from the
second-order force equilibrium, E¢R8). Notice that from(11),

X[cosh(L—a)—(L—a)\, sin)\l(L—a)]] sinceP(1°)= P.r, the perturbation parametércan be found from
the applied external load, as

Ci(l)Pi(l)
2\:D;

_,2 D,

i=2,3

C®\; coshja+

(0) _
SR P (36)
AG P&

This, of course, presumes that we only account for the first-order

X(cos\;a—ah;sin\;a) |. (34) load terms.
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Deflections. The deflections can be found by integrating thé&or the graphite-epoxy/honeycomb, the corresponding data are

relationship(Huang and Kardomate§45])

dy, aiP;
D _sin 0+ ——
dx; 2AG;

Introducing the asymptotic expansiofisl) and(12) and the first
and second-order expressia2®) and(30), gives

sin 26; . (37a)

) PO p(0) pl)
%=§ 1+ —— | oW+ | 1+ ——| 6@+ a'_P' oo
dx; GiA GiA GiA

+0(&%), (37)
and therefore by integrating with the boundary condition
y1(0)=0; andy;(-a)=0; i=23 (3%)
gives the first-order deflections as
c =O)
yP="2 114+ = (1—coS\1Xy), (389)
)\1 GlAl
Of PO
M=——| 1+ ——|(cosn;a—Cos\;x;); =23
i GiAi
(380)
and the second-order deflections as
a POV Q® @
y@P=| 1+ — ||| 5 — =] (coshyx,— 1)
G]_A]_ )\l )\l
O ] e apd
+ ——X; SINN1Xq | + —— ——(1—C0OS\ 1X1),
)\l )\l G]_Al
(3%)
aPO\[ QW c@
@=| 1+ ——||| =5 - ——](cos\x;—cos\;a)
GiAi )\i )\i
o | O P
+ ——(X; sink;x;—asin\;a) |+ — ——(cos\;a
)\i )\i GiAi
—Cos\ix); =23 (3D)
where
PUCH [ 24,P(®)
W=l T |1 +1]; i=123. (32)
2)\iDi GiAi

Discussion of Results

For an illustration of the results from the previous analysis,

consider a sandwich beam wiin mm) f,=f,=3, c=25, h
=3, w=20, andL =150. Two types of core were use@ a PVC

core with (in MPa) E.=93, G.=35, and(b) an aluminum hon-
eycomb core withE.=1, G.=200 (data from Gibson and Asby
[16]). The corresponding face-sheets wéag E-glass/polyester

unidirectional with(in GP3 E;;=E;,=26 andG;;=G;,=3 and
(b) graphite/epoxy unidirectional witle;;=E;,=140 andG;,

a1=1.209,a,=1.200, anda3=0.482, whereas the; /G;A; ra-

tios are 0.79410 %, 0.400<10°5, and 0.38& 107 °. The last
set of numbers shows the importance of the low extensional
modulus of the honeycomb core.

Figure 3 shows the critical straie,, for a range of delamina-
tion lengths in the case of sandwich material systemlt is seen
that the critical strain decreases with longer delaminations, as ex-
pected, and that the effect of transverse shear is to lower the
critical strain, again as expected.

The initial post-buckling results which follow are produced for
delamination lengtla=L/3. This solution is an asymptotic solu-
tion, so accuracy is expected to be compromised as we move
away from the critical point. Figure 4j shows the midpoint
delamination deflection versus applied strain for the two material
systems and Fig. #) shows the midpoint delamination-substrate
opening. Both deflections are higher for the glass-polyester/PVC
case, which is expected due to the lower stiffness of the face
sheet. The delamination loddormalized with the critical logds
shown in Fig. 58) and the substrate load is shown in Figbk(

For both material systems the delamination load and the substrate
load increases with applied strain, but no definite trend exists
between the two material systems—the normalizeith P.,)
delamination load being higher in the material syst@nbut the
normalized substrate load being higher in the material syséem

Finally, Fig. 6 shows the effect of the length over core thickness
aspect ratio on the midpoint delamination deflection during the
initial post-buckling phase for glass-epoxy/polyester material sys-
tem. The face sheet thickness and delamination length was kept
constant and the critical strain is essentially the same in both cases
(slightly lower for the higher aspect rajioBut the case of a
thicker core(lower aspect ratipshows a higher delamination de-
flection.
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