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Should an interface crack between the layers of the composite face-sheet or betwe
core and the composite face-sheet of a sandwich beam/plate exists, local bucklin
possible subsequent growth of this interface crack (delamination) may occur under
pression. In this study, the buckling, and initial post-buckling behavior is studied thro
a perturbation procedure that is based on the nonlinear beam equations with trans
shear included. Closed-form solutions for the load and midpoint delamination defle
versus applied compressive strain during the initial postbuckling phase are derive
lustrative results are presented for several sandwich construction configurations, in
ticular with regard to the effect of material system and transverse shear.
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Introduction
Delaminations~layer interface cracks! constitute a common

failure phenomenon in laminated composites and they are m
easily introduced from impact loads. These delaminations m
deteriorate the performance of the structure under compres
loading~e.g., Yin et al.@1# and Simitses et al.@2#!. A large number
of studies on the behavior of delamination buckling and po
buckling in composites have been carried out by many resea
ers, e.g., Chai et al.@3# by using a one-dimensional model, Whi
comb @4# and Shivakumar and Whitcomb@5# by using finite
elements and Rayleigh-Ritz analysis, Kardomateas@6# by con-
ducting monotonic compressive tests, Kardomateas@7# by using
elastica theory to account for large deformations during po
buckling, Kardomateas et al.@8# by studying both experimentally
and analytically the fatigue growth of delaminations during cyc
compression, etc.

Although the general principles are not very different, delam
nation failure in sandwich structures is just beginning to be
plored in detail. In this regard, differences in the behavior
delamination buckling and post-buckling within a sandwich str
ture from that of a laminated composite structure arise due to
fact that the substrate in a delaminated sandwich structure
cludes a much different kind of material, namely a transvers
flexible core made of foam or low strength honeycomb. To t
extent, the contribution of the shear stresses and shear defo
tions of the core are expected to be noteworthy and there
should be included in the formulation.

A typical sandwich structure is composed of two thin compos
laminated faces and a thick soft core made of foam or l
strength honeycomb. Due to its exceptional properties, ma
high stiffness and strength with little resultant weight pena
sandwich structures have been used in aircraft, marine, and o
types of structures. Research into sandwich structural beha
and failure modes can be traced following World War II in a rath
sporadic fashion but intensified in the 1990s, especially with
gard to proper modeling of the core through high-order theo
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~e.g., Kant and Patil@9#, Hunt and Da Silva@10,11#, Frostig@12#,
and Frostig and Baruch@13#!. Recently, there have been man
contributions presented at symposia dedicated to sandwich s
tures, e.g. Rajapakse et al.@14#.

Although these high-order theories are expected to render m
accurate results, they involve considerable effort in addressing
complexities of the formulation of the problem of post-bucklin
of delaminated beams, and therefore, in the present work, a
linear beam equation including transverse shear, properly for
lated for an unsymmetric sandwich section~meaning face sheet
not of the same geometry and/or material! is used to model the
delaminated, substrate, and base parts. The same approach c
used to study either a delamination within the face sheet o
debond at the interface between the face sheet and the core.

Formulation

Governing Equations and Boundary Conditions. Let us
consider a sandwich beam, of length 2L, and widthw, consisting
of two face sheets of thicknessf 1 and f 2 , extensional moduliEf 1
andEf 2 , and shear moduliGf 1 andGf 2 , respectively. The core
of thicknessc, has an extensional modulus,Ec , and shear modu-
lus Gc ~Fig. 1!. The delamination, of length 2a, is symmetrically
located at a distanceh from the top. Over the region of the
delamination, the sandwich beam consists of two parts:
delaminated layer of the upper face sheet~referred to as the
‘‘delaminated part,’’ of thicknessh) and the part below the
delamination~‘‘substrate part,’’ of thicknessf 12h1c1 f 2 , which
includes the core and the lower face sheet!. The region outside the
deamination is referred to as the ‘‘base part’’ and consists of
entire section of the sandwich beam, i.e., of thicknessf 11c
1 f 2 . We shall also denote the base part with 1, the delamina
part with 2, and the substrate part with 3. Let us also assume
the beam is clamped-clamped.

The characteristic of sandwich construction is that the neu
axis for the base and the substrate parts is in general no long
the middle of the corresponding sections. With respect to a re
ence axisx through the middle of the core, the neutral axis of t
base section is defined at a distancee1 ~Fig. 2!, as

e1~Ef 1f 11Ecc1Ef 2f 2!5Ef 2f 2S f 2

2
1

c

2D2Ef 1f 1S f 1

2
1

c

2D ,

(1a)

and that of the substrate part is at a distancee3 given by

-
s.
eek-
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mateas@15#. For the base part~1!,
e3@Ef 1~ f 12h!1Ecc1Ef 2f 2#5Ef 2f 2S f 2

2
1

c

2D2Ef 1~ f 12h!

3S f 12h

2
1

c

2D . (1b)

Moreover, while for the delaminated layer, which is homog
neous, the bending rigidity per unit width is

D25Ef 1

h3

12
, (2a)

for the base part, the equivalent flexural rigidity of the sandw
section per unit width, is~Fig. 2!

D15Ef 1

f 1
3

12
1Ef 1f 1S f 1

2
1

c

2
1e1D 2

1Ef 2

f 2
3

12
1Ef 2f 2

3S f 2

2
1

c

2
2e1D 2

1Ec

c3

12
1Ecce1

2, (2b)

and for the substrate~again, per unit width!,

Fig. 1 Definition of the geometry for a delaminated sandwich
beam Õplate
192 Õ Vol. 70, MARCH 2003
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D35Ef 1

~ f 12h!3

12
1Ef 1~ f 12h!S f 12h

2
1

c

2
1e3D 2

1Ec

c3

12
1Ecce3

21Ef 2

f 2
3

12
1Ef 2f 2S f 2

2
1

c

2
2e3D 2

. (2c)

The nonlinear differential equations including transverse sh
for the three parts of the sandwich beam-plate~Fig. 1!, namely the
base part~1!, delaminated part~2!, and substrate part~3!, are
~Huang and Kardomateas@15#!

Di

d2u

ds2
1PS a i P

2AiḠi

sin 2u1sinu D 50,

which, after Taylor series expansion of the sinu, becomes

Di

d2u i~xi !

dxi
2

1S a i Pi
2

AiḠi

1Pi D u i~xi !2S 2a i Pi
2

3AiḠi

1
Pi

6 D u i
3~xi !50,

i 51,2,3 (3a)

whereu i(x) is the rotation of the normal to the cross section,Di
is the bending rigidity,a i is the shear correction factor,Pi is the
axial load,Ai are the cross-sectional areas andḠi is the ‘‘average’’
shear modulus of each part, calculated from the compliance
the constituent phases@15#

f 11c1 f 2

Ḡ1

5
f 1

Gf 1

1
c

Gc

1
f 2

Gf 2

; Ḡ25Gf 1 ;

A15~ f 11c1 f 2!w; A25hw (3b)

f 12h1c1 f 2

Ḡ3

5
f 12h

Gf 1

1
c

Gc

1
f 2

Gf 2

;

A35~ f 12h1c1 f 2!w. (3c)

The shear correction factors can be found in Huang and Ka
Fig. 2 Force and moment resultants at the tip of the delamination
Transactions of the ASME
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a15Ḡ1A1w (
i 51,2

Ef i
2

4D1
2Gf i

Fai
4f i2

2

3
ai

2~ai
32bi

3!1
1

5
~ai

52bi
5!G

1
Ef i

2

D1
2Gc

F f i
2ci

2bi1
2

15

Ec
2

Ef i
2 bi

51
2

3

Ec

Ef i
f icibi

3G (3d)

where

ai5 f i1
c

2
1~21! i 11e1 ; bi5

c

2
1~21! i 11e1 ;

ci5
f i

2
1

c

2
1~21! i 11e1 , i 51,2. (3e)

Notice that since the delaminated part is homogeneous,a256/5,
and for the substrate part,a3 is found from (3d,e) by substituting
f 12h in place of f 1 , andD3 , A3 , Ḡ3 , e3 in place ofD1 , A1 ,
Ḡ1 , e1 .

The way the geometry was configured, gives the following c
ditions atxi50:

u i~0!50, i 51,2,3. (4)

The above condition is valid fori 51 because of the clamped-en
and for i 52,3 because of symmetry.

Furthermore, a kinematic condition of common slope betwe
the different parts at the section where the delamination start
ends reads

u1~L2a!5u2~2a!5u3~2a!5uA . (5)

The force and moment~about the neutral axis of the base pa!
equilibrium conditions are~Fig. 2!

P15P21P3 , (6)

M12M22M32P2S f 11
c

2
1e12

h

2D1P3~e32e1!50. (7)

Finally the axial displacement continuity condition at the tip
~Fig. 1! is

u2
A5u3

A , (8)

where

u2
A5

1

2 E2a

0

u2
2dx21

P2a

Ef 1wh
1uA

h

2
, (9)

u3
A5

1

2 E2a

0

u3
2dx31

P3a

@Ef 1~ f 12h!1Ecc1Ef 2f 2#w

2uAS e31
c

2
1 f 12hD . (10)

Asymptotic Expansion. Now, let us expandPi andu i as

Pi5Pi
(0)1jPi

(1)1j2Pi
(2)1j3Pi

(3)1 . . . , (11)

u i~xi !5ju i
(1)~xi !1j2u i

(2)~xi !1j3u i
(3)~xi !1 . . . , (12)

where the~0! superscript corresponds to the pre-buckling sta
the ~1! to the buckling state and the~2!, etc., to the post-buckling
state. Also, let us setj to be the common slope of the section
the delamination tip A, i.e.,

j5uA . (13)

From ~5! and ~12!, this gives the additional conditions

u1
(1)~L2a!51; u1

(2)~L2a!5u1
(3)~L2a!5 . . . 50, (14)

and

u i
(1)~2a!51; u i

(2)~2a!5u i
(3)~2a!5 . . . 50, i 52,3.

(15)
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Substituting Eqs.~11! and ~12! into Eq. ~3! and ~4!–~10! and
rearranging the terms based on the order ofj, we obtain separately
the equations and boundary conditions for the pre-buckling, bu
ling, and initial post-buckling problem. The asymptotic expans
is an efficient way of deriving closed-form solutions for the initi
post-buckling behavior and has also been used previously by
domateas@5# in the study of delaminations in monolithic compo
ites in conjunction with the elastica theory.

Pre-buckling State, O„j0
…. The major characteristic of the

pre-buckling state for a sandwich section is that under unifo
compressive strain there are nonzero bending moments~as op-
posed to a monolithic one in which the bending moments
zero! but zero bending deflections.

Under a uniformly applied compressive strain,e0 , the resultant
forces~per unit width! for the base part~1!, delaminated part~2!,
and substrate part~3!, are~Fig. 2!

P1
(0)5e0~Ef 1f 11Ecc1Ef 2f 2!, (16a)

P2
(0)5e0Ef 1h; P3

(0)5e0@Ef 1~ f 12h!1Ecc1Ef 2f 2#.
(16b)

The pre-buckling moments~per unit width! are then found as
~Fig. 2!

M1
(0)5e0FEf 1f 1S f 1

2
1

c

2
1e1D1Ecce1

2Ef 2f 2S f 2

2
1

c

2
2e1D G ; M2

(0)50, (17a)

M3
(0)5e0FEf 1~ f 12h!S f 12h

2
1

c

2
1e3D1Ecce3

2Ef 2f 2S f 2

2
1

c

2
2e3D G . (17b)

These pre-buckling forces and moments satisfy identically
force and moment equilibrium equation~about the neutral axis o
the base part!, Eqs.~6! and~7!. Furthermore, since a state of pu
axial compressive strain exists without bending deflections,
compatibility of shortening, Eq.~8! is also satisfied.

Buckling „First-Order … Equations, O„j1
…. From ~3! and

~11,12!, the first-order differential equation for the three parts

Di

d2u i
(1)~xi !

dxi
2

1S a i Pi
(0)2

AiḠi

1Pi
(0)D u i

(1)~xi !50, i 51,2,3

(18a)

and the corresponding boundary conditions from~4! are

u i
(1)~0!50, i 51,2,3, (18b)

and from~5!,

u1
(1)~L2a!5u2

(1)~2a!5u3
(1)~2a!5uA

(1)51. (18c)

The first-order moment equilibrium from~7! is

D1

du1
(1)

dx1
U

x15L2a

2D2

du2
(1)

dx2
U

x252a

2D3

du3
(1)

dx3
U

x352a

2P2
(1)S f 11

c

2
1e12

h

2D1P3
(1)~e32e1!50, (18d)

and the first-order force equilibrium,

P2
(1)1P3

(1)5P1
(1) . (18e)

Finally, the first-order compatibility equation from~8! becomes,
sinceuA

(1)51,
MARCH 2003, Vol. 70 Õ 193
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Fig. 3 Critical strain versus delamination length for the case of a glass-
polyester ÕPVC sandwich composite
e
c-

be

the

l

P3
(1)a

@Ef 1~ f 12h!1Ecc1Ef 2f 2#w
2S e31

c

2
1 f 12hD5

P2
(1)a

Ef 1hw
1

h

2
.

(18g)

Let’s set

l i5AS a i Pi
(0)2

AiḠi

1Pi
(0)D Y Di , i 51,2,3 (19)

where P1
(0) , P2

(0) , and P3
(0) are given in~16! in terms of the

uniform compressive straine0 . Then, the solutions for Eqs.~18a!
that satisfies the boundary conditions~18b!, is

u i
(1)5Ci

(1) sin~l ixi !, i 51,2,3. (20)

Now, the constantsC1
(1) , C2

(1) , C3
(1) are determined from the

common slope Eq.~18c!, as

C1
(1)51/sinl1~L2a!; C2

(1)521/sinl2a; C3
(1)521/sinl3a.

(21)

The characteristic equation is found in terms ofe0 by eliminat-
ing P1

(1) , P2
(1) , andP3

(1) from the previous equations. This is don
as follows.

The moment equilibrium Eq.~18d!, becomes

D1l1 cotl1~L2a!1D2l2 cotl2a1D3l3 cotl3a

5P2
(1)S f 11

c

2
1e12

h

2D2P3
(1)~e32e1!. (22a)

By using the neutral axis definitions~1a! and ~1b!, we obtain

e32e15S f 11
c

2
1e12

h

2D Ef 1h

@Ef 1~ f 12h!1Ecc1Ef 2f 2#
,

(22b)

therefore~22a! becomes
2003
e

P2
(1)

a

Ef 1hw
2P3

(1)
a

@Ef 1~ f 12h!1Ecc1Ef 2f 2#w

5
@D1l1 cotl1~L2a!1D2l2 cotl2a1D3l3 cotl3a#a

Ef 1hwS f 11
c

2
1e12

h

2D .

(23)

By comparing~18g! and~23!, we can see that the left-hand sid
of ~23! can be eliminated. Thus, we obtain the following chara
teristic equation:

@D1l1 cotl1~L2a!1D2l2 cotl2a1D3l3 cotl3a#a

Ef 1hwS f 11
c

2
1e12

h

2D
1S e31

c

2
1 f 12

h

2D50. (24)

Equation~24! is a nonlinear algebraic equation which can
solved numerically for the critical straine0 ~or critical load from
~16!!. In the numerical procedure, a solution is sought near
Euler buckling strain of the delaminated layer, which ise0

5p2h2/(12a2).

Initial Post-buckling, Second-order Equations, O„j2
….

From ~3! and ~11,12!, we obtain the second-order differentia
equation

Di

d2u i
(2)~xi !

dxi
2

1S a i Pi
(0)2

AiḠi

1Pi
(0)D u i

(2)~xi !

52S 2a i Pi
(0)Pi

(1)

AiḠi

1Pi
(1)D u i

(1)~xi !, i 51,2,3

(25)

and from~4! and ~14,15!,

u i
(2)~0!50, i 51,2,3 (26a)

u1
(2)~L2a!5u2

(2)~2a!5u3
(2)~2a!50. (26b)
Transactions of the ASME
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Fig. 4 „a… Comparison of the two material sandwich systems with regard to
the delamination midpoint deflection during the initial post-buckling phase. „b…
Comparison of the two material sandwich systems with regard to the midpoint
delamination-substrate opening during the initial post-buckling phase.
The second-order moment equilibrium from~7! is

D1

du1
(2)

dx1
U

x15L2a

2D2

du2
(2)

dx2
U

x252a

2D3

du3
(2)

dx3
U

x352a

2P2
(2)S f 11

c

2
1e12

h

2D1P3
(2)~e32e1!50, (27)

and the second-order force equilibrium is

P2
(2)1P3

(2)5P1
(2) . (28)
hanics
Finally, the second-order displacement compatibility from~8!–
~10! and ~11,12! is

1

2 E2a

0

u3
(1)2~x3!dx31

P3
(2)a

w@Ef 1~ f 12h!1Ecc1Ef 2f 2#

5
1

2 E2a

0

u2
(1)2~x2!dx21

P2
(2)a

Ef 1wh
. (29)
MARCH 2003, Vol. 70 Õ 195
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Fig. 5 „a… Comparison of the two material sandwich systems with regard to
the delamination load during the initial post-buckling phase. „b… Comparison of
the two material sandwich systems with regard to the substrate load during the
initial post-buckling phase.
n

The general solution for the second-order differential Eq.~25!
is

u i
(2)~xi !5Ci

(2) sinl ixi1Bi
(2) cosl ixi

1
Pi

(1)

2l iDi
S 2a i Pi

(0)

AiḠi

11D Ci
(1)xi cosl ixi . (30)

The constantsBi
(2) are zeros due to the boundary conditio

~26a!,
2003
s

Bi
(2)50, i 51,2,3. (31)

Applying the conditions~26b!, we can find the constantsCi
(2)

as

C1
(2)52

P1
(1)

2l1D1

C1
(1)~L2a!cotl1~L2a!S 2a1P1

(0)

A1Ḡ1

11D ,

(32a)

and
Transactions of the ASME
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Fig. 6 Effect of the length over core thickness aspect ratio on the midpoint
delamination deflection during the initial post-buckling phase for glass-
epoxy Õpolyester
f
and,
er

der

me

der
Ci
(2)52

Pi
(1)

2l iDi

Ci
(1)a cotl iaS 2a i Pi

(0)

AiḠi

11D , i 52,3.

(32b)

Now the displacement compatibility Eq.~29!, becomes

P2
(2)

a

Ef 1wh
2P3

(2)
a

w@Ef 1~ f 12h!1Ecc1Ef 2f 2#

5
1

4 FC3
(1)2S a2

sin 2l3a

2l3
D2C2

(1)2S a2
sin 2l2a

2l2
D G . (33)

The moment equilibrium~27!, by substituting the second-orde
deflections~30! and again the relationship for the neutral axes
the substrate and the base part~22b!, becomes

F P2
(2)

a

Ef 1wh
2P3

(2)
a

w@Ef 1~ f 12h!1Ecc1Ef 2f 2#
G

3

Ef 1whS f 11
c

2
1e12

h

2
D

a

5D1H C1
(2)l1 cosl1~L2a!1

C1
(1)P1

(1)

2l1D1
S 2a1P1

(0)

A1Ḡ1

11D
3@cosl1~L2a!2~L2a!l1 sinl1~L2a!#J
2 (

i 52,3
DiFCi

(2)l i cosl ia1
Ci

(1)Pi
(1)

2l iDi
S 2a i Pi

(0)

AiḠi

11D
3~cosl ia2al i sinl ia!G . (34)
anics
r
of

Comparing~34! and~33!, we can eliminate the left-hand side o
the latter equation, which contains the second-order forces,
by using also~32!, thus obtain one equation for the first-ord
forces, i.e.,

a2P2
(1)1a3P3

(1)5
1

4 FC3
(1)2S a2

sin 2l3a

2l3
D2C2

(1)2

3S a2
sin 2l2a

2l2
D G Ef 1whS f 11

c

2
1e12

h

2D
a

,

(35)

where

ai5
C1

(1)

2l1
S 2a1P1

(0)

A1Ḡ1

11D Fcosl1~L2a!2
~L2a!l1

sinl1~L2a!
G

1
Ci

(1)

2l i
S 2a i Pi

(0)

AiḠi

11D S al i

sinl ia
2cosl iaD , i 52,3.

The second equation for the first-order forces is the first-or
compatibility Eq.~18g!.

The system of these two linear equations,~35! and ~18g!, can
be solved for the first-order forces,P2

(1) andP3
(1) .

The solution for the higher-order terms can proceed in the sa
fashion.

The first-order applied loadP1
(1) is in turn found from the

second-order force equilibrium, Eq.~28!. Notice that from~11!,
sinceP1

(0)5Pcr , the perturbation parameterj can be found from
the applied external load,P̄, as

j5
P̄2Pcr

P1
(1) . (36)

This, of course, presumes that we only account for the first-or
load terms.
MARCH 2003, Vol. 70 Õ 197
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Deflections. The deflections can be found by integrating t
relationship~Huang and Kardomateas@15#!

dyi

dxi

5sinu i1
a i Pi

2AiḠi

sin 2u i . (37a)

Introducing the asymptotic expansions~11! and ~12! and the first
and second-order expressions~20! and ~30!, gives

dyi

dxi

5jS 11
a i Pi

(0)

ḠiAi
D u i

(1)1j2F S 11
a i Pi

(0)

ḠiAi
D u i

(2)1
a i Pi

(1)

ḠiAi

u i
(1)G

1O~j3!, (37b)

and therefore by integrating with the boundary condition

y1~0!50; and yi~2a!50; i 52,3 (37c)

gives the first-order deflections as

y1
(1)5

C1
(1)

l1
S 11

a1P1
(0)

Ḡ1A1
D ~12cosl1x1!, (38a)

yi
(1)5

Ci
( i )

l i
S 11

a i Pi
(0)

ḠiAi
D ~cosl ia2cosl ixi !; i 52,3

(38b)

and the second-order deflections as

y1
(2)5S 11

a1P1
(0)

Ḡ1A1
D F S Q1

(1)

l1
2

2
C1

(2)

l1
D ~cosl1x121!

1
Q1

(1)

l1

x1 sinl1x1G1
C1

(1)

l1

a1P1
(1)

Ḡ1A1

~12cosl1x1!,

(39a)

yi
(2)5S 11

a i Pi
(0)

ḠiAi
D F S Qi

(1)

l i
2

2
Ci

(2)

l i
D ~cosl ixi2cosl ia!

1
Qi

(1)

l i

~xi sinl ixi2a sinl ia!G1
Ci

(1)

l i

a i Pi
(1)

ḠiAi

~cosl ia

2cosl ixi !; i 52,3 (39b)

where

Qi
(1)5

Pi
(1)Ci

(1)

2l iDi
S 2a i Pi

(0)

ḠiAi

11D ; i 51,2,3. (39c)

Discussion of Results
For an illustration of the results from the previous analys

consider a sandwich beam with~in mm! f 15 f 253, c525, h
53, w520, andL5150. Two types of core were used:~a! a PVC
core with ~in MPa! Ec593, Gc535, and~b! an aluminum hon-
eycomb core withEc51, Gc5200 ~data from Gibson and Asby
@16#!. The corresponding face-sheets were~a! E-glass/polyester
unidirectional with~in GPa! Ef 15Ef 2526 andGf 15Gf 253 and
~b! graphite/epoxy unidirectional withEf 15Ef 25140 andGf 1
5Gf 255. In the results presented, the case of no transverse s
effect corresponds toa i50.

The shear correction factors for the case of glass-polyester/P
system area151.215,a251.200, anda351.044. More impor-
tant are the corresponding ratiosa i /ḠiAi , as these represent th
magnitude of the effect of transverse shear and these were, re
tively, 0.45331024, 0.66731025, and 0.47631024. The first
and the last numbers are larger because they include the
unlike the second number which is for the delaminated layer o
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For the graphite-epoxy/honeycomb, the corresponding data
a151.209,a251.200, anda350.482, whereas thea i /ḠiAi ra-
tios are 0.79431025, 0.40031025, and 0.38631025. The last
set of numbers shows the importance of the low extensio
modulus of the honeycomb core.

Figure 3 shows the critical strain,ecr for a range of delamina-
tion lengths in the case of sandwich material system~a!. It is seen
that the critical strain decreases with longer delaminations, as
pected, and that the effect of transverse shear is to lower
critical strain, again as expected.

The initial post-buckling results which follow are produced f
delamination lengtha5L/3. This solution is an asymptotic solu
tion, so accuracy is expected to be compromised as we m
away from the critical point. Figure 4(a) shows the midpoint
delamination deflection versus applied strain for the two mate
systems and Fig. 4(b) shows the midpoint delamination-substra
opening. Both deflections are higher for the glass-polyester/P
case, which is expected due to the lower stiffness of the f
sheet. The delamination load~normalized with the critical load! is
shown in Fig. 5(a) and the substrate load is shown in Fig. 5(b).
For both material systems the delamination load and the subs
load increases with applied strain, but no definite trend ex
between the two material systems—the normalized~with Pcr)
delamination load being higher in the material system~b! but the
normalized substrate load being higher in the material system~a!.

Finally, Fig. 6 shows the effect of the length over core thickne
aspect ratio on the midpoint delamination deflection during
initial post-buckling phase for glass-epoxy/polyester material s
tem. The face sheet thickness and delamination length was
constant and the critical strain is essentially the same in both c
~slightly lower for the higher aspect ratio!. But the case of a
thicker core~lower aspect ratio! shows a higher delamination de
flection.
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