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ABSTRACT

Advanced composite and sandwich construction has raised the issue of accuracy
of the column buckling formulas currently used in structural design. In these advanced
material systems, transverse shear effects are significant and cannot be ignored. The
objective of this paper is to answer the question of how accurate the simple column
buckling formulas by Euler or the transverse shear correction formulas by Engesser and
by Haringx or other direct column buckling formulas in the literature are when com-
posite or sandwich construction and modcrate thickness are involved. For this purpose,
a three-dimensional elasticity solution is presented along with finite element results.
For the elasticity solution, which is performed for the monolithic orthotropic material,
the column is considered to be in the form of a hollow, circular cylinder and the direct
column buckling formulas are based on the axial modulus. As an example, the cases of
an orthotropic material with stiffness constants typical of glass/epoxy or graphite/epoxy
and the reinforcing direction along the periphery or along the cylinder axis are con-
sidered. Finite element results are presented for the sandwich columns, which are of
metallic (aluminum) and laminated (boron/epoxy, graphite/epoxy, and Kevlar/epoxy)
facings and alloy-foam or glass/phenolic honeycomb core. Sandwich columns are es-
pecially critical with the Euler load being, in some cases of typical design, as much as
almost five times the critical load from the finite elements and, therefore, in these cases
of sandwich construction, the classical Euler load calculations cannot be relied upon.

§1. INTRODUCTION

In composite structural members, the buckling strength is an important design parameter
because of the large strength-to-weight ratio and the lack of extensive plastic yielding in
these materials. Columns made out of composite materials for structural applications are
envisioned in the form of a hollow cylinder of moderate thickness, produced mainly by
filament winding or pultrusion. Such designs can be used, for example, as support members
in civil and offshore structures or in space vehicles as a primary load-carrying structure.
Recently, considerable attention has been paid to another advanced structural concept,
namely sandwich construction, which consists typically of two thin composite laminated
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faces and a thick soft core made of foam or low-strength honeycomb. Sandwich construction
has already been used in aircraft, marine, and other types of structures.

The case of a slender, ideal column, which is built in vertically at the base, free at the
upper end, and subjected to an axial force P, constitutes the first problem of bifurcation
buckling, the one that was originally solved by Euler [1]. The Euler solution is based on the
well-known Euler—Bernoulli assumptions (i.e., plane sections remain plane after bending,
no effect of transverse shear deformation) and for an isotropic elastic material. Nontriv-
ial solutions (nonzero transverse deflections) are then sought for the equations governing
bending of the column under an axial compressive load and subject to the particular set of
boundary conditions; thus, the problem is reduced to an eigen-boundary-value problem [2].

Regarding formulas for the stability loss of elastic bars, the only alternative direct
expressions to the Euler load that exist in the literature are the Engesser [3] and the Haringx
[4, 5] formulas. (Haringx actually obtained the formula in connection with helical springs.)
These formulas are also in the book by Timoshenko and Gere [6]. (Timoshenko also referred
to the Haringx analysis as the “modified” approach.) These formulas were intended to
account for the influence of transverse shearing deformations. The specific load expressions,
denoted by Pengssr and Prqgy, are given in the Results section. Despite the simplicity of the
derivation of these formulas, it will be seen that they perform remarkably well in accounting
for the thickness effects as well as for the effects of a low ratio of shear versus extensional
modulus.

Composite materials have one important distinguishing feature: namely, an extensional-
to-transverse shear modulus ratio much larger than that of their metal counterparts. In
sandwich beams, this ratio is even larger due to the contribution of the core which is
expected to carry the transverse shear and which has a very low modulus. The resulting
effects of transverse shear may render the calculations of the critical load from simple
classical column formulas highly nonconservative. Moreover, an additional deviation is
expected because composites are anisotropic and these classical column formulas are based
on isotropic material assumption. The objective of the present paper is to investigate the
accuracy of the classical Euler load, and the simple transverse shear correction formulas
by Engesser and Haringx, with regard to predicting the critical ioad. To this extent, in the
first part of the paper, a three-dimensional elasticity analysis for a generally orthotropic rod
with no restrictive assumptions regarding the cross-sectional dimensions is performed for
the homogeneous composite cases; in the second part of the paper, finite element results
are presented for the sandwich composite cases. For the sandwich construction, transverse
shear is accounted for in direct formulas given by Bazant and Cedolin [7], Huang and
Kardomateas [8], and Allen [9]. It should be mentioned that transverse shear effects are
expected to be even more significant in sandwich columns due to the low transverse shear
modulus of the core.

Three-dimensional elasticity solutions for buckling of composites have been derived
by Kardomateas [10] and Kardomateas and Chung [11] for a cylindrical orthotropic shell
subjected to external pressure. In these studies, it was shown that the critical load predicted
by shell theory can be quite nonconservative for thick construction. For axial compression,
arelated study was conducted by Kardomateas [12] for the case of a transversely isotropic
column. The reason for restricting the material to a transversely isotropic one was the desire
to produce closed-form analytical solutions. By performing a series expansion of the terms
of the resulting characteristic equation from the elasticity formulation for the isotropic case,
the Euler load was proven to be the solution in the first approximation; consideration of the
second approximation gave a direct expression for the correction to the Euler load, therefore
defining a new, yet simple formula for column buckling, which herein will be referred to
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as the Euler load with a second term. In a subsequent paper [13], the study was extended
to the case of a generally orthotropic moderately thick shell under axial compression. An
orthotropic column under axial loading was studied by Kardomateas and Dancila [14] and
some results reported herein are from that study.

Therefore, the first part of the study conducted in this paper includes specific results for
the critical load of a column in the form of a hollow cylinder under axial compression for
various ratios of length over external radius, L/ R;, and ratios of external over internal radii,
R,/ R;. The nonlinear three-dimensional theory of elasticity is appropriately formulated
and reduced to a standard eigenvalue problem for ordinary linear differential equations
in terms of a single variable (the radial distance r) with the applied axial load P as the
eigenvalue. The formulation employs the exact elasticity solution by Lekhnitskii [15] for
the prebuckling state. The results from the elasticity formulation will be compared with
the classical Euler load predictions and with the Engesser or Haringx column buckling
with transverse shear correction formulas, as well as with the Euler load with a second
term, as derived by Kardomateas [12]. The effect of the material orthotropy is examined
by considering two material cases, glass/cpoxy and graphite/epoxy, and with reinforcing
direction either along the circumferential (8) or along the axial (z) direction.

The second part of this paper presents results from these direct formulas compared
with ABAQUS [16] finite element results. Some finite element results for both static and
dynamic buckling of sandwich columns had also been presented by Kardomateas et al. [17],
but that study did not include a comparison with Allen’s [9] formulas; the present study
includes a more thorough comparison with the direct column buckling formulas and a more
comprehensive discussion regarding their performance.

It should be noted that the only type of buckling considered here is what is typically
referred to [18] as “long-wavelength buckling” (also called general instability) in contrast
with “short-wavelength buckling” (also called face wrinkling).

§2. HOMOGENEOUS ORTHOTROPIC COLUMN
2.1. Buckling from three-dimensional elasticity

Following Kardomateas [10], we obtain the following buckling equations from the
equilibrium of the column, considered a three-dimensional elastic body:

a / ! ! 1 a ! / a 14 7
E(Urr - T?ewz +T93w9) “F ;%(Tlle - Ugewz + ngwe) + a_z(rr;z - ngwz + ngwe)
1
o ;(Ojrr - OJGS + T(r)z('ué + ngw:’- - ZT?Gwlz) =0 (1a)
a T/ 0 / 0 7 1 a OJ 0 / 0 / a ,LJ 0 / 0 /
E( et 0, W, — Trzwr) + ;%( 00 T TroW, _Tezwr) + a_Z( b T T W, — crzzwr)
1
o ;(Z'IJrG + U:(-)rw,z - Ggawlz + ngwé - T?zw/r) =0 . (1b)
a T/ 0 ! 0 / a ’T/ 0 i 0 ! a OJ 0 / 0 /
a( rz O Wo + Trewr) + ;%( 6; — TreWg + Ueewr) + E( 22— TrWe + Tezwr)
1 ’ ’
+;(T/rz _O_(r)rw9+r[96wr) =0 (1)

In the preceding equations, of; and w? are the values of the stresses o;; and linear
rotations w; at the initial equilibrium position, and o}; and w’, are the values at the perturbed
(buckled) position.
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The associated boundary conditions for the lateral and end surfaces can be expressed
as follows, again following Kardomateas [10]:

0 it 0 ol NG / 0 / 0. ook X & / O sl O it Na
(0, — Tow), + T, wy)l + (T, — 0gew), + Tg,wo) M + (T, — To,w), + oo,wp)h =0

(2a)
/ 0 / 0 AV / 0 ! 0 AW / 0 / 0 AY N
(T,g + 05w} — T, W, )l + (Ogg + oW, — Tg,w, )i + (Tg, + T W), — o, w;)A =0
(2b)
/ 0 ! 0 '\7 ’ 0 / 0 '\ 2 0 / 0 I\ A
(T, + Tew, — op, i)l + (Th, + oggw, — Togwp )i + (0, + Tg,w, — To,wp)A =0
(20)

where (?, i, fi) is the outward unit normal on the surface (before any deformation).

2.1.1. Prebuckling state

The column is considered to be in a cylindrical form; therefore, problem under con-
sideration is that of an orthotropic hollow cylinder compressed by an axial force applied at
one end. The stress—strain relations for the orthotropic body are

(o] [eu c2 a3 0 0 07 [e,]

0o cn e ¢z 0 0 0 || eg
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where ¢;; are the stiffness constants (using the notation I = r,2 =0, 3 = 2).
Let R, be the internal and R, the external radius. Lekhnitskii [15] gave the stress field
for an applied compressive load of absolute value P in terms of the following quantities:
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The stress field for orthotropy is as follows:
op, = P(Co+ Cir* ™' + Cor ™71) (5a)
0de = P(Co+ Cikr¥™" — Cokr™") (5b)
P k —k
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T?O - T?z = ng =0 (5d)
where
A REHL _ R+
Co=—z Ci=—m——p= (Se)
T R¥*—-RE T
Rk~l _ R/(—l i'
Cr = L (RiR)*' = (5)
R3* — R¥* T

Notice that, for orthotropy, both ¢, and Ogs are nonzero. For an isotropic or a trans-
versely isotropic body with the plane of isotropy normal to the 3 = z axis, these two stress
components are zero.

In the previous equations, a;; are the compliance constants, found by taking the inverse
of the stiffness matrix in Eq. (3).

2.1.2. Perturbed state
Then, using constitutive relations (3) for the stresses OJ:/ in terms of the linear strains
€;;» and taking into account the strain—displacement relations for the strains €;; and the

rotations wj in terms of the displacements u;, v, w; at the buckled state are

Vyg + Uy
€ =Uyr €0 = — €z = Wi (6a)
r
Uie Uy w).e
Yre = +Vyp—— Yr: =Uj;+ Wy, Yo: =V + (6b)
r r r
and the linear rotations are
w0 Vi Uie
2w, = —— — v, 2wg = Uj; — Wy, 2w, =, + —— — (6¢)
r r r

and taking into account Egs. (5), buckling Eq. (1a) for the problem at hand is written in
terms of the displacements at the perturbed state as follows:

0
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The second buckling equation, Eq. (2b), gives
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In a similar fashion, the third buckling equation, Eq. (1¢), gives

0 I
Orr Wi,r w
css+ L | (w0 + —Z | + [cog + 28 ) 2188
2 . - =5
—69r O—E')r Uiz
+ | c13+¢55 — > Uiy + | c3 + css — Uiz

2 r
096\ Viec , 1dad,
2 r 2 dr

C33W)

24

+ <C23+C44_ (wl,r_u],z):O (76)

In the perturbed position, we seek equilibrium modes in the form

i IR
ui(r,0,z) = U(r)cosOsin = v1(r, 0,2z) = V(r)sinOsin T

wi(r, 8, 2) = W(r)cos 0 cos % -

where the functions U(r), V(r), W(r) are uniquely determined. These equilibrium modes
are the “column-type” buckling modes of a single axial half-wave and circumferential
wave. Notice that the equilibrium modes in Eq. (8) are a special case of the general shell
buckling modes that had been considered in the three-dimensional elasticity shell buckling
formulation of Kardomateas [13]. It should also be mentioned that these modes correspond
to the condition of “simply supported” ends since «; varies as sin Az and 4, = u; ,, = O at
z=0,L.

Now let U®(r), V@(r), and W(r) denote the ith derivative of U(r), V(r), and W(r),
respectively, with the additional notation U@(r) = U(r), VO(r) = V(r), and WO(r) =
W(r).

Substituting in Eq. (7a), we obtain the following linear homogeneous ordinary differ-
ential equation:

c
U(rY'en + UrY ==+ Ulboo + bot Pr > + bn Pr*=>

+ b3 Pr 73 4 (bog + bos P) + bog Pr*=" + bo; Pr*1)

I
+ Z VOR(dio + di) P)ri=2 + dia Pr=3+ 4 dia Pr =311
i=0

l
T Z WON(fio + fir P~  + fa Pre—2ti 4 faPré=2+i] =0
i—=0

R <r<R %)

The second differential equation, Eq. (7b), gives

V(r)[(gos + gosP) + gos Pr*~" + gy Pr* 1)

2
+ Z VO(gio + g PIr' ™ + gin Pri—=™ + gy Pro=)
i=0

Isotropic,
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|
+ 2 U o + hiy Pyr' = + hig Pr=7 4 gy Prt=+)
=0

+ W(r(too + to1 P)r ' + top Pr* 2 + 13 Pr*=2)=0
Ri<r<R (9b)

In a similar fashion, Eq. (7¢) gives
2

W(r)gos + Z WO (gio + g P)r'* + g Pr=3 4 gis Pr3+)
i=0

1
+ D UDW)(sio + 511 PYr'™" + 5o Pri= 4 5;3Pr+21)
i=0

+ V(NIB + Bt Pr ' + By Pr2 + By Pr 21 =0
R <r<R, (9¢)

All of Egs. (9) are linear, homogeneous, ordinary differential equations of the second
order for U(r), V(r), and W(r). In these equations, the constants b;;, d;;, fij, 8ij> hij, tij,
qij» Sij, and (3;; are given in the Appendix and depend on the material stiffness coefficients
Cij and k.

Now we proceed to the boundary conditions on the lateral surfaces r = R;(j =1, 2).
These will complete the formulation of the eigenvalue problem for the critical load.

From Egs. (2), we obtain for/ = £1,m = i = 0,

0,=0 TotoLw,=0 T,—ocowy=0 at r =R, Ry (10)
Substituting in Egs. (3), (6), (8), and (5), the boundary condition ¢,, =0 at r = R;(j =
1,2) gives

7 c T .
U'(Rj)c +[U(R)) + V(Rj)]—lel—?—cl3zW(Rj)=0 j=12 (11a)
J

The boundary condition T, + 0%,w, =0atr = R;(j = 1, 2) gives

1 . Co G -1, &2 —k—1

C
+[V(R)) + U(Rj)][ (—666 + TOP) Rfl
C C
+71PR5‘2+72PRIk_2} j=1,2 (11b)

In a similar fashion, the condition T,, — ¢ wy =0 at R;(j = 1, 2) gives

7 Co Ci o1 G k—1

, C Ciopr . Coooy .
+W(Rj)[(css+7oP)+71PRf '+72PRI." ‘] ji=1,2 (llc)
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Equations (9) and (11) constitute an eigenvalue problem for differential equations, with
the parameter of applied compressive load P, which can be solved by standard numerical
methods (two-point boundary-value problem).

Before discussing the numerical procedure used for solving this eigenvalue problem
one final point will be addressed. To completely satisfy all the elasticity requirements, we
should discuss the boundary conditions at the ends. From Egs. (2), the boundary condition
on the ends are

T, +oLwp=0 T, —oLw. =0 0,=0 az=0,L (12)

Since o7, varies as sin%z, the condition o7, = 0 on both the lower end, z = 0, and
the upper end, z = L, is satisfied. It can be proved that the remaining two conditions are
satisfied on the average [13, 14]. At this point, it should be noted that for some of the
boundary conditions a form of resultant instead of pointwise conditions has been frequently
used in elasticity treatments and can be considered to be based on some form of Saint-
Venant’s principle. For this reason, they are sometimes referred to as relaxed end conditions
of the Saint-Venant type [19].

As has already been stated, Eqs. (9) and (11) constitute an eigenvalue problem for
ordinary second-order linear differential equations in the r variable, with the applied com-
pressive load P, the eigenvalue. This is essentially a standard two-point boundary-value
problem. The relaxation method was used [20], which is essentially based on replacing
the system of ordinary differential equations by a set of finite difference equations on a
grid of points that spans the entire thickness of the section. For this purpose, an equally
spaced mesh of 241 points was employed and the procedure turned out to be highly ef-
ficient with rapid convergence. As an initial guess for the iteration process, the classical
column theory solution was used. In the solution scheme, seven functions of r are defined:
n=Uy,=U,y3=V,ya=V' ys =W, y¢ = W', and y; = P. The seven differential
equations are y; = y2, Eq. (9a), y; = y4, Eq. (9b), y5 = ys, Eq. (9¢), and y;, = 0. The corre-
sponding seven boundary conditions are, at r = Ry, Eqs. (11a)—(11c); atr = R,, U = 1.0;
and at r = Ry, Eqgs. (11a)—(11c¢). The solution gives the eigenfunctions y;, y3, and ys, as
well as the eigenvalue y;.

An investigation of the convergence showed that essentially the same results were
produced with even three times as many mesh points. It is also first verified that the structure
behaves as a column rather than a shell (which would buckle at multiple axial half-waves
or circumferential waves). This is accomplished by considering the structure as a shell and
using the Kardomateas [13] solution to find if it would buckle at multiple axial half-waves
or multiple circumferential waves.

2.2. Buckling from simple, direct formulas
The Euler critical load for a compressed simply supported column is

712E3] 2 T
Pae= == =8l A=y (13)

where 7 is the moment of inertia of the cross section.
Two formulas provide a correction to the Euler load due to the influence of transverse
shearing deformations. The first formula is the Engesser [3] formula,
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and the second is the formula obtained by Haringx [3, 4] in connection with helical springs,

V1448 Peuyer/AG — 1
Prmere = 15
Hmgre 2B/AG ( )

where {3 is a numerical factor depending on the shape of the transverse section, A is the
cross-sectional area [= n(R% — Rlz)], and G is the shear modulus. For a tubular cross section,
B =2.0[21].

By performing a series expansion of the terms of the resulting characteristic equation
from the elasticity formulation for an isotropic column of solid circular cross section,
Kardomateas [12] proved that the Euler load is the solution in the first approximation;
consideration of the second approximation gave a direct expression for the correction to the
Euler load, therefore defining a revised, yet simple, formula for column buckling. Although
this formula was derived by considering a solid cylinder, it can be heuristically extended
for the case of a hollow cylinder. In terms of

- w [R}—R?
A=M2JT/A == [=2_ 'L 16a

and Poisson’s ratio vs;, the Euler load with a second term is

€2

Pry = N E3l — ———=  _F3A 16b
E2 3 16(1—v322) 3 (16b)

where

A2 5
ey =+vA—4— Z<5 + 2u3 + 1205,) (16¢)
and
32 34

A 2 A 2 3 4
A =16+ ?(20+ Buyy +48v5, )+ % (409-+212v3; — 356035, —48v3, + 144v3,)  (16d)

2.3. Results for homogeneous orthotropic columns

Results are produced for two common polymeric composites: namely, the mildly or-
thotropic glass/epoxy and the strongly orthotropic graphite/epoxy. The elastic constants of
the materials are given in the tablcs of results, with the following notation: 1 is the radial
r, 21s the circumferential 8, and 3 is the axial (z) direction. Two reinforcing configurations
are considered with each material, namely along the circumferential (8) or along the axial
(z) direction.

Regarding the glass/epoxy material, Tables 1a and 15 give the predictions of the Euler,
Peuter, and Engesser, Pngss:, the Haringx, Phmgy, and the Euler with a second term, Pgj,
formulas as a ratio over the elasticity solution, Pepg, for radii ratio R;/R; = 1.20 and
column length ratios L /R, ranging from 10 to 20. Tables 2a and 2b give the same data for
graphite/epoxy material and Table 3 for isotropic material with Poisson’s ratio v = 0.3.
The calculations for the critical loads from these formulas are based on the axial modulus

Es.
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Table 1a
Comparison with column buckling formulas: Glass/epoxy
with axial reinforcement

Comparison with colums

L/Ry P E.uler/ Pejast P En.

L/R2 PEulcr/Pelast PEngssr/Pclust PHrngx/Pelasl PE2/Pelast

10 (3.948) (
10 1.598 0.870 1.036 1.502 12 2.751)
12 1.414 0.894 1.002 1.354 14 (2.023) (
14 1.304 0914 0.986 1.263 16 1.774
16 1232 0.929 0.978 1.203 18 1.612
18 1.183 0.941 0.976 1.161 20 1.495

20 1.149 0.950 0.975 1.131

Rz/Rl = 120 (Rz =1.01
59,Gn=43; Poisson’s re

i 3 2. p — —
R:/R, = 1.20 (R, = 1.0 m); Moduli in GN/m% E, = E, = T, ey in the general shell

14, E3 = 57, G3 = 5.7,Gn, = 5.0, Gyz = 5.7; Poisson’s ratios:

viz = 0.400, va3 = 0.068, vy, = 0.277.
ul(r, e, Z) =/
One important issue is that of the relation of compression strength to buckling strength. .
Indeed, in practical applications, the strength in compression has to be considered in con- wi(r,0,2) = N
junction with the results on the critical load, because compressive failure may precede
buckling. For example, for the graphite/epoxy with circumferential reinforcement (Table
2b), assuming a typical compressive strength of o,y = 0.246 GPa, the critical load Pejaq

is below the load corresponding to the compressive strength oy, for length ratios L/R; Comparisos
beyond 12, which means that buckling would precede compressive failure. In some of the
other configurations, compressive failure would precede buckling. Although this simple
. : S LIR, F
calculation does not take into account the complex phenomena of composite failure that
could involve, among other things, the influence of layer/fiber waviness, it illustrates the 10
importance of considering buckling in compressively loaded composite structures. 12
Next follows a list of conclusions, drawn from the results of Tables 1-3. 14
1. Inall cases the elasticity solution predicts a lower value than the Euler critical load; 1 16
thatis, Pryer 1S @ nonconservative estimate. Moreover, the degree of nonconservatism 18
of the Euler formula is strongly dependent on the reinforcing direction; the axially 20
Table 15 R
Comparison with column buckling formulas: Glass/epoxy with 5; = 0'.3'(:
circumferential reinforcement S
L/RZ PEuler/Pe]asl PEngssr/Pelast Pngx/Pelasl PE2/Pelasl Cai
10 1.145 0.950 0.974 1.081 L/IR,
12 1.100 0.963 0.976 1.057
14 1.073 0.971 0.979 1.042 10
16 1.056 0.977 0.982 1.032 12
18 1.044 0.982 0.985 1.025 14
20 1.035 0.985 0.987 1.020 16
18
Ry/R; = 1.20 (R, = 1.0 m); Moduli in GN/m?: E, = 57, E| = 20

Es=14,G3; = 5.0, G, = Gy = 5.7; Poisson’s ratios: vi; = 0.068,
Uz = 0277y U3l = 0.400.
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Table 2a
Comparison with column buckling formulas: Graphite/epoxy with axial reinforcement

L/R2 PEuler/Pela51 PEngssr/Pelust Pngx/Pelast PEZ/PeIas(

10 (3.948) (1.061) (1.775) (3.711)  Buckles as a shell (2,3)f
12 (2.751) (0.952) (1.401) (2.634)  Buckles as a shell (2,3)f
14 (2.023) (0.847) (1.136) (1.959)  Buckles as a shell (2,4)"
16 1.774 0.860 1.078 1.731
18 1.612 0.876 1.044 1.581
20 1.495 0.890 1.021 1.472

Ry/R; =120 (R, = 1.0 m); Moduli in GN/m*: E; =9.1, E; =9.9, E5 = 140.0, G3; =4.7,G» =
5.9, G,z = 4.3; Poisson’s ratios: vy, = 0.533, vz; = 0.020, v3, = 0.283.
f(n, m) in the general shell buckling modes:

i, 8, 2) = DryicosuBisin me urly, B, 2) = Vi jsinndsn e

wy(r, 8, z7) = W(r)cosnBcos )_n?
Table 2b

Comparison with column buckling formulas: Graphite/epoxy with
circumferential reinforcement

L/RZ PEuler/Pelast PEngssr/ Pelasl Pl-{mgx/Pelasl PEZ/Pelast

10 1.121 0.952 0.972 1.060
12 1.081 0.963 0.974 1.040
14 1.058 0.970 0.976 1.028
16 1.042 0.975 0.979 1.020
f 18 1.032 0.978 0.981 1.014
\ 20 1.024 0.981 0.982 1.010

Ry/R; = 1.20 (R, = 1.0 m); Moduli in GN/m?; E, = 140, E, = 9.9,
E;=09.1,G3, =59,G, =4.7, Gy3 = 4.3, Poisson’s ratios: vy, = 0.020,
vy3 = 0.300, v3; = 0.490.

Table 3
Camparison with column buckling formulas: Isotropic

L/R; PEuler/Pelasl PEngssr/ Pelas( PHrngx/Pelasl PEZ/Pelasl

10 1.137 0.934 0.960 1.068
12 1.095 0.951 0.966 1.048
14 1.069 0.963 0.972 1.036
16 1.053 0.971 0.976 1.028
18 1.042 0.976 0.980 1.022
20 1.034 0.981 0.983 1.018

v=203, R2/R, =120 (R, = 1.0 m).
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reinforced columns show the highest deviation from the elasticity value. The degree
of nonconscrvatism of the Euler load for the circumferentially reinforced columns
is much smaller and is comparable to that of isotropic columns.

2. The strongly orthotropic graphite/epoxy material show much higher deviations from
the elasticity solution than the glass/epoxy in the axially reinforced configuration;
however, the deviations from the elasticity solution for both the graphite/epoxy and
glass/epoxy are comparable in the circumferentially reinforced case.

3. For the small length ratios (L / R, between 10 and 14), the graphite/epoxy with axial
reinforcement buckles as a shell; this is not the case with the glass/epoxy material.

4. The Engesser shear correction formula is, in all cases examined, conservative; that
is, it predicts a lower critical load than the elasticity solution.

5. The Haringx shear correction formula is, in most cases (but not always), conser-
vative. For the isotropic case (Table 3) it is conservative. However, for a strongly
orthotropic material (graphite/epoxy with axial reinforcement, Table 2a) or for rela-
tively short columns (Table 14) it may be nonconservative. Also, in all cases consid-
ered, the Haringx (second Timoshenko) shear correction estimate is always closer
to the elasticity solution than the first one.

6. The Euler load with a second term formula, Eq. (256), which is supposed to account
for thickness effects, is a nonconservative estimate; it performs better than the Euler
load, but in general no better than the Engesser/Haringx formulas for moderate
thickness.

§3. SANDWICH COLUMN
3.1. Buckling of a sandwich column from direct formulas

The structural geometry is of a column of length L, depth ¢ 4 2A, and width B. The
column is of sandwich construction, symmetric about the midsurface, and the depth of the
facings is A, while the depth of the core is ¢. The boundary conditions are (a) clamped-
free-cantilever, (b) simply supported at both ends, and (c¢) clamped at both ends. For the
composite facings, all plies have 0° orientation with respect to the column axis. The material
properties are given in Table 4.

One of the closed-form solutions has been developed and was reported by Bazant and
Cedolin [7]. Another sandwich column buckling formula is the expression by Huang and
Kardomateas [8]. Finally, two other sandwich column buckling formulas are the ones in
Allen’s book [9]; one is for thin and the other for thick face sheets. Moreover, static critical
conditions were also obtained by ABAQUS [16] for several configurations.

Table 4
Material properties for the sandwich columns

Material Eq (kPa) Eo, (kPa) V12 V21 Glg (kPa)

Aluminum 6.90E + 07 6.90E+07 035 035 2.59E+ 07
Boron/epoxy 221E408 207E407 0.23 0.0216 S5S.79E+06
Kevlar/epoxy 7.59E4-07 5.52E+06 0.34 0.0247 2.28E+06
Graphite/epoxy 1.81E4+08 1.03E4+07 028 0.0159 7.17E406
Alloy/foam 459E4+04 459E4+04 033 033 1.72E + 04
Honeycomb 390E4+05 320E4+04 025 0.0205 4.80E+04
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For Bazant and Cedolin’s [7] formula,

Pui = (EDGKL [ |1+ ke EDs (17a)
r = acr ~ /7 1 \D a
= G.(h+¢)B
where
(EI) Er  plk +/)2+h3 (17b)
a S ———— — C go—
(1 =vpvy) 2 ! 12
(EI) £y h( +h)’B (17¢)
= ——=(c
’ (1 —vipvp) 2
and

7t/2L  for cantilever
kee = § m/L  for simply supported (18)
2nt/L  for clamped

Note that the symbols used herein are not exactly those used by Bazant and Cedolin [7].

Regarding the other closed-form formula for sandwich buckling, by Huang and Kar-
domateas [8], in addition to the previous definitions, that is, face sheets of thickness 4 and
extensional modulus E, and core of thickness c, extensional modulus E., and shear mod-
ulus G, we denote by G the shear moduli of the face sheets. The width is uniform, B, and
the total cross-sectional area is denoted by A = B(2h + ¢).

Because the section under consideration is symmetric, the neutral surface is at the
middle surface, and the equivalent flexural rigidity of the sandwich scction, (E1)eg, is

(EI) B[, L2k h+CZ+EC3 (19a)
= = 5T 5 = a

. "6 M \2 "2 ‘12

Haung and Kardomateas [8] presented a solution for the buckling and initial post-

buckling behavior of sandwich beams including transverse shear effects (for a general
unsymmetric construction). The linearized differential equation for the beam is [8]

d*o (ocP

Eleq—— —+1|PO=0 196
(EDeps + AG+) (195)

where G is the “effective” shear modulus of the sandwich section, defined by Huang and

Kardomateas [8] from a rule-of-mixtures calculation on the compliances of the constituent
phases:
2h+c¢  2h c

- = 4 — 19
= GI+GC (19¢)

where « is the shear correction factor, which takes into account the nonuniform distribution
of shear stresses due to the sandwich construction throughout the entire cross section; it is
found in the Huang and Kardomateas [8] from energy equivalency. If we define

c
=h+ — b=
a +2

(194)

¢
2
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then the shear correction factor is found as [8]

o« =2GABe (19¢)

where

EZ 2 1
A [a“h — 2@ -+ g(a5 - b5)]

C MEIG, 3
E} 2 E2 , 2E
f 242 [ ] ¢ 3
—— | WPd* + - =5b° 4+ = —hdb 19
" (El)gqcc[ 15 E} T3, ] at

Notice that for a homogeneous part (i.e., same material for face sheets and core) it can
be proved that this formula reduces to the simple and familiar value of & = 6/5. Also,
notice that the shear correction factor is given in [8] for a general unsymmetric construction
(different properties of top and bottom face sheets).

Returning to Eq. (19b), following the usual procedure for solving for the critical load
by using the general trigonometric solution of Eq. (5) and imposing the relevant boundary
conditions (e.g., [2]) we can write the critical load as

~1 /1 + 4B Dgh2/(AG)

Pch - =
Qa/AG)

(19¢)

Static critical loads are computed for several facing materials, boundary conditions,
and column lengths. To this end, the two closed-form expressions, Eqgs. (1) and (6)—(8), are
employed. Moreover, the classical (Euler) critical value was computed via the following
formula:

Py = k2(E eq (20)

This is shown only for comparison purposes. It is expected that Eq. (20) overestimates
the critical load because it does notaccount for transverse shear effects, and this is seen in the
results that follow. However, the question we are researching is the degrec of conservatism
of the Euler formula.

The last two formulas for sandwich column buckling are the ones in Allen’s book [9].
The first one is for thin face sheets, as follows:

1 1 c
= o (2la)
PcrAI PEul B(C =+ h)zGc
For thick faces, Allen [9] suggests
14 f— S
Pernr = Poyia—— o108 (21b)

Pra _ B
I+ P Pe

where Pgr represents the sum of the Euler loads of the two faces when they buckle as
independent struts; that is, when the core is absent and P, may be described as the shear
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buckling load

(c + h)? , BW?

P. = BG, Por = E ki~

c

The Euler load used in Allen’s formulas is without the core; that is,

R h(c+h)?
Peaa = E k2B [E + —2—]
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21¢)

21d)

Finally, results are also generated by employing ABAQUS [16] for several geometries.

For this study, eight-node brick elements were used.

3.2. Results for sandwich columns

Table 5 shows the effect of boundary conditions and it depicts static critical loads for
L = 2032 mm and using various sources. There are several observations that need to be

pointed out.

1. It is seen from the results of this table that the effect of transverse shear is more
pronounced as we move from the cantilever column to the simply supported column
to the clamped/clamped one. One reason for this is that the effective simply sup-
ported length decreases (E] remains constant) and transverse shear effects are more
pronounced for shorter columns. It is also seen that for the same core material and ge-
ometry, and for the same thickness of the facings, the construction in going from the

Table 5

Critical loads of sandwich columns for alloy-foam core in Newtons

Al Boron/epoxy Grpahitc/epoxy Kevlar/epoxy

Cantilever Euler 3,090 9,890 8,100
ABAQUS 3,278 8,086 6,853

[7] 3,205 7,803 6,645

[8] 2,883 8,216 6,915

Allenl 2,869 7,934 6,739

Allen2 2,867 7,942 6,744

Simply supported Euler 12,358 39,558 32,400
ABAQUS 10,543 20,215 18,189

[7] 10,148 19,021 17,195

[8] 9,919 24,579 21,228

Allenl 9,448 19,919 17,925

Allen2 9,456 19,997 17,983

Clamped/clamped Euler 49,434 158,232 129,601
ABAQUS 22,864 37,311 36,523

[7 22,139 29,694 28,512

[8] 28,829 62,227 54,893

Allenl 22,147 32,007 30,638

Allen2 22,246 32,422 30,971

3,398
3,197
3,127
3,152
3,133
3,132
13,593
10,340
9,952
10,735
10,153
10,164
54,373
25,292
21,903
30,817
23,087
23,201

L =2032 mm, ¢ = 25.3 mm, £ =2.53 mm, and B = 76.2 mm.
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stronger (higher static critical load) configuration to the weaker one is: boron/epoxy,
graphite/epoxy, to Kevlar/epoxy and aluminum (virtually tied). If specific buckling
strength is considered, boron/epoxy and graphite/epoxy are virtually tied. They are
followed by Kevlar/epoxy, which is better than aluminum.

2. The cantilever and metallic face sheet is the only case where the Euler load and
the load in [7] are lower than the ABAQUS results. This is a matter of concern that
needs to be investigated further. The underestimation is on the order of 6%.

3. In all other cases, although the geometry is not very demanding in terms of length
and thickness, the Euler load is higher than the ABAQUS results by amounts ranging
from +6% for the Kevlar/epoxy facings and cantilever case to a factor of more than
4 for the boron/epoxy and clamped/clamped case. This shows clearly that the Euler
load cannot be relied on for design of sandwich columns.

4. In all cases, the formula in [8] and the two Allen formulas are below the Euler load.

5. The two formulas by Allen are in all cases close to each other but this was ex-
pected because our geometry does not feature thick face sheets; it is expected that
differences would become pronounced if a construction with thicker face sheets is
adopted.

6. With the exception of the metallic face sheets, the two formulas by Allen are within
5% of the results in [7]; the latter are the lowest.

7. For the composite face sheets and the simply supported and the clamped/clamped
cases, the two formulas by Allen seem to be the closest to the ABAQUS results; for
the cantilever case, the results in [8] are the closest to the ABAQUS results.

8. Forthe clamped/clamped case, the Euler load is in all cases higher than the ABAQUS
results by more than a factor of 2, which again underscores the significance of
transverse shear effects.

9. Results from [8] are in most cases higher than the ABAQUS results, which indicates
that this formula is in general nonconservative, although it is ¢ven in some cases the
most accurate.

10. The two formulas by Allen and the formula in [7] are in all cases below the ABAQUS
results, which indicates that these formulas are conservative.

Table 6 gives the critical loads for the same geometry as in Table 5 but with ahoneycomb
core instead of alloy foam. The results in Table 6 lead to observations similar to those in
Table 5. Additional observations are as follows:

11. The overestimation of the Euler load is less than in the alloy-foam core case. For
example, in the clamped/clamped case and graphite/epoxy cases and in the alloy-
foam case, the Euler load is higher than the ABAQUS by a factor of 3.5, and in the
Honeycomb core case this factor is 1.9.

12. The formula in [8] seems to perform better in the honeycomb core case. For all cases
of Kevlar/epoxy face sheets, these results [8] are the closest to the ABAQUS results
(in addition to the cantilever case and all composite face sheets as in the alloy-foam
core).

The effect of transverse shear is significant and can be most easily seen by comparing
the results in the literature [7, 8] for the clamped/clamped case in the case of alloy-foam
core and boron/epoxy face sheets. In Table 5, for a column length of 2032 mm, the result
from [7] is only 18.7% of the Euler load and the result from [8] is only 39.3% of the Euler
load. For a shorter column, this effect would be even more pronounced. For example, for
a column 1270 mm long, the result from [7] would be only 8.2% of the Euler load and the
present result from reference [8] would be only 26.8% of the Euler load.

Isotropic,
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Table 6
Critical loads of sandwich columns for Honeycomb core in Newtons

Al Boron/epoxy Grpahite/cpoxy Kevlar/epoxy

Cantilever Euler 3,111 9,911 8,121 3,419
ABAQUS 3475 9,256 7,696 3,386

7 3,396 9,042 7,523 3,309

[8] 3,029 9,164 7,607 3,321

Allenl 3,027 9,105 7,572 3,318

Allen?2 3,004 9,089 7,554 3,296

Simply supported Euler 12,443 39,643 32,485 13,678
ABAQUS 12,690 29,581 25,458 12,400

[7] 12,349 28,567 24,637 12,060

(8] 11,306 31,063 26,324 12,325

Allenl 11,199 29,277 25,180 12,189

Allen2 11,127 29,274 25,158 12,120

Clamped/clamped Euler 49,772 158,571 129,939 54,711
ABAQUS 35,154 71,211 66,801 39,191

(7] 36,229 62,076 57,125 35,603

[8] 37,356 88,667 77,094 40,267

Allenl 34,456 65,628 60,144 36,753

Allen2 34,342 65,923 60,341 36,661

L =2032 mm, ¢ =253 mm, h =2.53 mm, and B = 76.2 mm.

Since the formula in [7] and the two formulas by Allen are based on an Engesser-
type [3] derivation, whereas the critical load formula in [8] is based on a Haringx-type [4,
5] derivation, it should be mentioned at this point that the study of column buckling for
monolithic composites from three-dimensional elasticity, which is outlined in the first part
of this paper, showed that the Engesser formula would predict in general smaller values for
the critical load, therefore is expected to be the most conservative, but not in general the most
accurate, and indeed the Haringx formula results were found to be in general closer to the
elasticity results. The complexity of sandwich composites notwithstanding, this conclusion
is not contrary to the general observations made in this second part of the paper (with the
exceptions noted in the detailed discussion of the tables).

At this point, it is important that we also refer to the recent work by Bazant [22], in
which the discrepancy between Engesser-type and Haringx-type formulas is explained by
the dependence of the shear modulus on the initial stresses, which is in turn influenced by
the choice of the finite strain measure. In fact, the shear stiffness of the core is in general
a linear function of the axial forces carried by the skins, and this function is different for
stability theories associated with different strain measures. (The corresponding definitions
of the shear force caused by the applied axial force are also different.) Therefore, the
Engesser-type buckling formula and the Haringx-type buckling formula are, in principle,
mutually equivalent, but different shear stiffness of the core must be used in each. However,
as explained by Bazant [22], the Haringx-type formula represents a special case in which
the shear modulus of the core can be taken as independent of the axial force in the skins and
equal to the shear modulus measured in a simple test (¢.g., the torsional test of a thin-walled
tube made out of the core material). Therefore, the Haringx-type formula is more convenient
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for practice, and it is the formula where the assumption of constant shear modulus would
be, strictly speaking. most approgriate. In aur work, 3 constant, thear moduius of he, g,
is used in all buckling formulas. Thus, our general finding that the Haringx-type formula

is closer to the three-dimensional elasticity results is in agreement with the conclusions
reached by Bazant [22].

§4. CONCLUDING COMMENTS

In closing, it is recommended that more work is needed in investigating the issues and
sources of disagreement among the different direct formulas. There is additional concern
that the loads computed by ABAQUS in some cases are above the Euler load. Further work
should also focus on extending the three-dimensional elasticity formulation for monolithic
composites to the sandwich construction.
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APPENDIX
For convenience, define
| a %)
Dy=—s IR 5 L (A1)
T ass
aiz + ka apy —ka
By o i Lo o e M (A2)
ass ass

The coefficients of the first differential equation, Eq. (9a), are
by = —(c2+c¢es)  bor = —Co/20 by =—-Cik/2  boz = C2k/2
bos = —Cssh> bgs = —DoA2 /2 bog = —DyA*/2 by = —DyA%/2  (A3)
dip = (c12 + ¢ce6) dy = —Cp/2 dip = —kC,/2 diz =kCy/2

doy = —(c22 + ce6) dor = —Cy/2 dyp = —kC,/2 dy =kCy/2 (A4
fio = —A(ciz +css) fit =2ADy/2 fia=2AD,/2 fis=2ADy/2
foo = A(caz — ¢13) foo=fo=/ =0 (AS)

The coefficients of the second differential equation, Eq. (9b), are given as follows:

go=ces 8u=0Co/2 gn=C/2 g3=0C)/2

gu=cs 8u=0C/2 gn=C/2 gi3=Cy/2

8o = —(cn+ces) g1 =—Co/2  gn=-Ci/2 g =—C/2

g = —cah’  gos=—DoA’/2  gos =—DiN*/2 gy =~DaA*/2 (A6)
hio=—(ce6 +¢12)  hu=0Co/2  hiu=C/2  hiz=Cy/2

hoo = —(ca+cs6)  hor =—Co/2  hoo=—-Ci/2  hpy=—-C2/2  (AT)
to=(cn+ca)d 101 =-ADo/2  to=-ADi/2 153 =—-ADy/2 (AB)

Finally, the coefficients of the third differential equation, Eq. (9¢), are

g20 = Cs5 g2 = Co/2 gn =C/2 g = Cy/2

go=c¢s qu=0Co/2 qu=kC/2  qi3=—-kCy/2

go=—cu qou=-Co qu=-kCi/2 qi3=kCy/2  gos=—cuN\
(A9)

s10 = (¢s5 + ¢13)A s11 = —ACo/2 si2 = —ACy/2 si3 = —ACy/2

si6= (cs+css)h  sop =—ACof2 sm=—kAC1/2 sp=KkACy/2  (A10)

Bo = (s +cah  Bor=—ACo/2 B =—kACi/2 Bg=KkAC2/2  (AlD)




