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Abstract

The buckling of a sandwich cylindrical shell under uniform external hydrostatic pressure is studied in three ways. The simplifying

assumption of a long shell is made (or, equivalently, ‘ring’ assumption), in which the buckling modes are assumed to be two-dimensional, i.e.

no axial component of the displacement field, and no axial dependence of the radial and hoop displacement components. All constituent

phases of the sandwich structure, i.e. the facings and the core, are assumed to be orthotropic. First, the structure is considered a three-

dimensional (3D) elastic body, the corresponding problem is formulated and the solution is derived by solving a set of two linear

homogeneous ordinary differential equations of the second-order in r (the radial coordinate), i.e. an eigenvalue problem for differential

equations, with the external pressure, p the parameter/eigenvalue. A complication in the sandwich construction is due to the fact that the

displacement field is continuous but has a slope discontinuity at the face-sheet/core interfaces, which necessitates imposing ‘internal’

boundary conditions at the face-sheet/core interfaces, as opposed to the traditional two-end-point boundary value problems. Second, the

structure is considered a shell and shell theory results are generated with and without accounting for the transverse shear effect. Two

transverse shear correction approaches are employed, one based only on the core, and the other based on an effective shear modulus that

includes the face-sheets. Third, finite element results are generated by use of the ABAQUS finite element code. In this part, two types of

elements are used: a shear deformable shell element and a solid 3D (brick) element. The results from all these three different approaches are

compared.
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1. Introduction

In composite structures, the buckling strength is an

important design parameter because of the large strength-to-

weight ratio and the lack of extensive plastic yielding.

Often, these advanced materials are employed in a sandwich

construction, which consists of two thin composite lami-

nated faces and a thick soft core made of foam or low

strength honeycomb. In sea navy applications, sandwich

plate or shell structures are considered for surface ship

substructures or submersible hulls. In these sandwich

structures, the need for the accurate prediction of critical

loads is even greater, because of the effect of the low

modulus core, which promotes the transverse shear effects,

and the comparatively large thickness of the structure.

Although structural buckling was traditionally studied

using column, plate or shell theories, the demands and

complexities of advanced composite and sandwich con-

struction have brought to surface the inadequacy of these

classical approaches. In response, the mechanics commu-

nity has researched higher order theories, e.g. Refs. [1,2],

which, nevertheless, are still based on a priori assumptions,

made most commonly for the displacement distributions

through the thickness. The need exists for assessing the

accuracy of all these different approaches. A solution for the

critical load based on considering the structure as a three-

dimensional (3D) elastic body would serve as a benchmark.

In this regard, several elasticity solutions for monolithic

homogeneous composite shell buckling have become

available. In particular, Kardomateas [3] formulated and

solved the problem for the case of uniform external

pressure and orthotropic homogeneous material; in this

study, just as in the present one, a long shell was studied
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(‘ring’ assumption). The ring assumption was relaxed in a

further study [4], in which a non-zero axial displacement

and a full dependence of the buckling modes on the three

coordinates was assumed. Elasticity solutions for other

types of loading of homogeneous composite shells are

summarized in Ref. [5].

The geometry of a circular cylindrical shell is particu-

larly attractive for constructing elasticity solutions due to

the axisymmetry which simplifies the analysis. Further-

more, a pre-requisite to obtaining elasticity solutions for

shell buckling is the existence of 3D elasticity solutions to

the pre-buckling problem. Elasticity solutions for mono-

lithic homogeneous orthotropic cylindrical shells have been

provided by Lekhnitskii [6]. Recently, elasticity solutions

for sandwich shells were obtained by Kardomateas [7], by

properly extending the solutions for monolithic structures.

The latter is the pre-buckling solution needed to formulate

the bifurcation problem in the elasticity context, as outlined

in the present paper. The comparison to shell theory

predictions will be based on the formulae presented in

Refs. [8,9] and specialized to an infinite length cylinder,

whose behavior is equivalent to that of a sandwich ring.

Finally, a comparison is made with results from a

commercial finite element code using both a shear

deformable shell element and a solid 3D (brick) element.

2. Formulation

The buckling equations in the context of 3D elasticity for

a cylindrical shell were obtained by Kardomateas [3] from

the equations of equilibrium in terms of the second Piola-

Kirchhoff stress tensor, by subtracting these at the perturbed

and initial states, and making order of magnitude assump-

tions on the products of stresses and strains/rotations, based

on the fact that a characteristic feature of stability problems

is the shift from positions with small rotations to positions

with rotations substantially exceeding the strains.

The associated boundary conditions were obtained from

the traction (stress resultant) relationships in terms of the

second Piola-Kirchhoff stress tensor, and by further

considering the fact that because of the hydrostatic pressure

loading, the magnitude of the surface load remains invariant

under deformation, but its direction changes (since hydro-

static pressure is always directed along the normal to the

surface on which it acts). Again, these were obtained in

Ref. [3] by writing these equations for the initial and the

perturbed equilibrium position and then subtracting them

and using the previous arguments on the relative magnitudes

of the rotations. These conditions will also be used when we

impose traction continuity at the core/face-sheet interfaces.

2.1. Pre-buckling state

The problem under consideration is that of a sandwich

hollow cylinder deformed by uniformly distributed external

pressure, p (Fig. 1) and of infinite length (generalized plane

deformation assumption). Then, not only the stresses, but

also the displacements do not depend on the axial

coordinate. Alternatively, this is the assumption we would

make if the cylinder was securely fixed at the ends. An

elasticity solution to this problem was provided by

Kardomateas [7]. The solution is an extension of the

classical one by Lekhnitskii [6] for a homogeneous,

orthotropic shell and was provided in closed form. All

three phases, i.e. the two face-sheets and the core were

assumed to be orthotropic. Moreover, there were no

restrictions as far as the individual thicknesses of the face-

sheets and the sandwich construction could be asymmetric.

In this configuration, the axially symmetric distribution

of external forces produces stresses identical at all cross-

sections and dependent only on the radial coordinate r: We

take the axis of the body as the z-axis of the cylindrical

coordinate system and we denote by R1 and R2 the inner and

outer radii. Let us also denote each phase by i where i ¼ f2

for the outer face-sheet, i ¼ c for the core and i ¼ f1 for the

inner face-sheet. Then, for each phase, the orthotropic

strain–stress relations are
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where ai
ij are the compliance constants (we have used the

notation 1 ; r; 2 ; u; 3 ; z).

Let us introduce the following notation for constants

which enter into the stress formulas and depend on the

elastic properties:
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11 2
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2
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33
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22 2
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s
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ð2bÞ

Then, the pre-buckling stresses in each of the phases, i.e. for

i ¼ f1; c; f2; are:

s0ðiÞ
rr ðrÞ ¼ pðCðiÞ

1 rki21 þ CðiÞ
2 r2ki21Þ; ð3aÞ

s
0ðiÞ
uu ðrÞ ¼ pðCðiÞ

1 kir
ki21 2 CðiÞ

2 kir
2ki21Þ; ð3bÞ
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t
0ðiÞ
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Furthermore, the pre-buckling radial displacement is found

to be

u0ðiÞðrÞ ¼ p CðiÞ
1

ðbi
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2

ðbi
11 2 kib

i
12Þ

ki

r2ki

" #
;

ð3eÞ

theotherdisplacementsbeingzero, i.e.v0ðiÞðrÞ ¼ w0ðiÞðrÞ ¼ 0:

The constants CðiÞ
1 ; CðiÞ

2 are found from the conditions on

the cylindrical lateral surfaces (traction-free) and the

conditions at the interfaces between the phases of the

sandwich structure. Specifically, the traction conditions at

the face-sheet/core interfaces [7]

sðf 1Þ
rr lr¼R1þf1

¼ sðcÞ
rr lr¼R1þf1

; sðcÞ
rr lr¼R22f2

¼ sðf 2Þ
rr lr¼R22f2

;

give two equations

C
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2kf1
21

¼ CðcÞ
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2kc21
; ð4aÞ

Fig. 1. Definition of the geometry and the loading. A cylindrical sandwich shell under external pressure.
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and
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The displacement continuity at the face-sheet/core inter-

faces, give another two equations
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Finally, the conditions of tractions at the lateral surfaces

(traction-free inner surface and pressure, p; at the outer)

give:

C
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1 R
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1 þ C
ðf1Þ
2 R

2kf1
21

1 ¼ 0; ð6aÞ

C
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2 R

2kf2
21

2 ¼ 21: ð6bÞ

The six linear equations (4)–(6) can be solved for the six

constants CðiÞ
1 ; CðiÞ

2 ; ði ¼ f1; c; f2Þ:

2.2. Perturbed state

In the perturbed position, we seek plane equilibrium

modes as follows:

uiðr; uÞ ¼ UiðrÞcos nu; viðr; uÞ ¼ ViðrÞsin nu;

wiðr; uÞ ¼ 0; i ¼ f1; c; f2

ð7Þ

Substituting these in the strain vs displacement relations
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and then using the stress–strain relations in terms of the

stiffness constants, ci
ij
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the buckling equations from Ref. [3] result in the following

two linear homogeneous ordinary differential equations of

the second-order for UiðrÞ; ViðrÞ; where i ¼ f1 for R1 # r #

R1 þ f1; i ¼ c for R1 þ f1 # r # R2 2 f2 and i ¼ f2 for R2 2

f2 # r # R2:
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The associated boundary conditions are as follows.

(a) At the inner and outer bounding surfaces, we have the

following two traction conditions at each of the surfaces [3]

sðjÞ
rr ¼ 0; t

ðjÞ
ru þ s0ðjÞ

rr vðjÞ
z ¼ 2pjv

ðjÞ
z ;

where j ¼ f1 and pj ¼ 0 at r ¼ R1 (inner bounding surface)

and j ¼ f2 and pj ¼ p at r ¼ R2 (outer bounding surface),
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which result in

c
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and
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(b) At the face-sheet/core interfaces, we have the

following four conditions at each of the interfaces.

Traction continuity:

c
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12
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Displacement continuity:

Uj ¼ Uc; Vj ¼ Vc; ð11cÞ

where j ¼ f1 at r ¼ R1 þ f1 (inner face-sheet/core interface)

and j ¼ f2 at r ¼ R2 2 f2 (outer face-sheet/core interface).

2.3. Solution of the eigen-boundary-value problem

for differential equations

Eqs. (9)–(11) constitute an eigenvalue problem for

differential equations, with p the parameter (two point

boundary value problem). An important point is that s0ðiÞ
rr ðrÞ;

s
0ðiÞ
uu ðrÞ and s0ðiÞ

rr
0ðrÞ depend linearly on the external pressure,

p (the parameter) through expressions in the form of Eq. (6)

and this makes possible the direct application of standard

solution techniques.

With respect to the method used there is a difference

between the present problem and the one for the

homogeneous orthotropic body solved in Ref. [3]. The

complication in the present problem is due to the fact

that the displacement field is continuous but has a slope

discontinuity at the face-sheet/core interfaces. This is the

reason that the displacement field was not defined as one

function but as three distinct functions for i ¼ f1; c and

f2; i.e. the two face-sheets and the core. Our formulation

of the problem employs, hence, ‘internal’ boundary

conditions at the face-sheet/core interfaces, as outlined

above. Due to this complication, the shooting method

[10] was deemed to be the best way to solve this eigen-

boundary-value problem for differential equations. A

special version of the shooting method was formulated

and programmed for this problem. In fact, for each of the

three constituent phases of the sandwich structure,

we have five variables: y1 ¼ Ui; y2 ¼ U 0
i; y3 ¼ Vi; y4 ¼

V 0
i; and y5 ¼ p: The five differential equations are: y01 ¼

y2; the first equilibrium equation (9a), y03 ¼ y4; the

second equilibrium equation (9b) and y05 ¼ 0:

The method starts from the inner boundary r ¼ R1 and

integrates the five first-order differential equations from

R1 to the inner face-sheet/core interface R1 þ f1 (i.e.

through the inner face-sheet). At the inner bounding

surface, R1; we have three conditions, the two traction

boundary conditions, Eq. (10), and a third condition of

(arbitrarily) setting Uf1
¼ 1:0; therefore we have two

freely specifiable variables. The freely specifiable starting

values at R1 are taken as the y5 (pressure), and the

y3ðVf1
Þ and these are taken as the values from the

shell theory (described later). Then, the three boundary

conditions at r1 allow finding the starting values for y1;

y2 and y4: Once we reach the inner face-sheet/core

interface, R1 þ f1; the tractions from the inner face-sheet

side are calculated; these should equal the tractions from

the core side, according to the boundary conditions on

the face-sheet/core interface, Eqs. (11a) and (11b). This

allows finding the slopes of the displacements, y2 ¼ U 0
c

and y4 ¼ V 0
c for starting the shooting into the core (note

that the other three functions, y1 ¼ Uc; y3 ¼ Vc and y5 ¼

p; are continuous according to Eq. (11c), and their values

at R1 þ f1 have already been found at the end of the

integration step through the inner face-sheet). The next

step is integrating the five differential equations from

R1 þ f1 to R2 2 f2; i.e. through the core. In a similar

manner, once we reach the outer face-sheet/core inter-

face, R2 2 f2; the tractions from the core side are

calculated; these should equal the tractions from the

outer face-sheet side, per Eqs. (11a) and 11(b), and this

allows finding the slopes of the displacements, y2 ¼ U 0
f2

and y4 ¼ V 0
f2

for starting the shooting into the outer-face-

sheet (again, the other three functions are continuous and

their values at R2 2 f2 have already been found at the

end of the integration step through the core). The third

step is the integration through the outer-face-sheet. Once

the outer bounding surface, R2; is reached, the traction

boundary conditions, Eq. (10), which ought to be zero,

are calculated. Multi-dimensional Newton–Raphson is

then used to develop a linear matrix equation for the two

increments to the adjustable parameters, y5 and y3 at R1:

These increments are solved for and added and the

shooting repeats until convergence. For the integration

phase, we used a Runge–Kutta driver with adaptive

stepsize control. The method produced results very fast

and without any numerical complication.

3. Results

As an illustrative example, consider a sandwich

ring with the following geometry: core, c ¼ 25:4 mm

(1 in.), face-sheets f1 ¼ f2 ¼ f ¼ 2:54 mm (0.1 in.)
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Sand width B ¼ 76:2 mm (3 in.). This value for B was

chosen in order to assume that buckling is in the plane of the

ring and not out of the plane. Note that the sandwich is

symmetric about its mid-surface. The total thickness of the

ring is, thus, h ¼ 2f þ c ¼ 30:48 mm (1.2 in.), and is kept

constant. The mean radius, R0; is chosen in such a manner

that the ratio R0=h ranges from 15 to 120.

Material properties for the face-sheets and the core are

given in Table 1. The core is isotropic alloy-foam and the

face-sheets are boron/epoxy or graphite/epoxy or kevlar/

epoxy unidirectional with zero deg. orientation with respect

to the hoop direction. Note again that 1 is the radial ðrÞ; 2 is

the circumferential ðuÞ; and 3 the axial ðzÞ direction.

Note also that by referring to Eq. (1), the compliance

constants for each orthotropic phase are:

a11 ¼
1

E1

; a22 ¼
1

E2

; a33 ¼
1

E3

;

a44 ¼
1

G23

; a55 ¼
1

G31

; a66 ¼
1

G12

;

a12 ¼ 2
n21

E2

; a13 ¼ 2
n31

E3

; a23 ¼ 2
n32

E3

:

3.1. Shell theory modeling

Since the shell is considered to be very long, the buckling

analysis reduces to that for a ring [8]. If the transverse shear

effect is neglected, the expression for the pressure becomes

(classical)

pcl ¼ 3
ðEIÞeq

BR3
0

; ð12aÞ

where ðEIÞeq is the equivalent bending rigidity, given in

terms of the extensional moduli of the face-sheets Ef and the

core Ec by:

ðEIÞeq ¼ w Ef

f 3

6
þ 2Ef f

f

2
þ

c

2

� �2

þEc

c3

12

" #
: ð12bÞ

If the transverse shear effect is accounted for, then

pw=shear ¼ 3
ðEIÞeq

BR3ð1 þ 4ksÞ
; ks ¼

ðEIÞeq

CR2
0

; ð13aÞ

where

C ¼
ð

A
KG dA; ð13bÞ

K being a shear correction factor taken as equal to one and G

is the transverse shear stiffness of the sandwich cross-

section.

Two different expressions for C are employed herein. In

the first case, it is assumed that only the core contributes, in

which case, C ¼ BcGc
12 and

ks1 ¼
ðEIÞeq

BcGc
12R2

0

; ð14aÞ

where Gc is the shear modulus of the core.

In the second case, an effective shear modulus for the

sandwich section, �G; which includes the contribution of

the facings, is derived based on the compliances of the

constituent phases [11]. The expression for �G is given by

2f þ c
�G

¼
2f

Gf
12

þ
c

Gc
12

; ð14bÞ

where Gf
12 is the shear modulus of the facings. Therefore, in

this case

ks2 ¼
ðEIÞeq

Bð2f þ cÞ �GR2
0

: ð14cÞ

Table 2 gives the critical pressure from the elasticity

formulation for a range of mean radius over total thickness

ratios, in comparison with the classical shell and the two

shear deformable shell formulas. In all cases, n ¼ 2 was

used in the buckling modes, Eq. (9) (as is the case with

external pressure). It is seen that the classical (no shear)

formula can yield results highly non-conservative, even

approaching 10 times the elasticity value for the lower ratio

of R0=htot and boron/epoxy case. Both shear correction

formulas yield reasonable results with the shear correction

formula based on the core only being in general con-

servative as opposed to the shear correction formula based

on an ‘effective shear modulus’, �G; which is non-

conservative.

In the results presented in Table 2, the face-sheets were

quite thin and the shear correction formula based on the core

Table 1

Material properties

Material E2 (GPa) E1 ¼ E3 (GPa) G31 (GPa) G12 ¼ G23 (GPa) n31 n21 ¼ n23

Face-sheets

Boron/epoxy 221.0 20.7 3.29 5.79 0.45 0.23

Graphite/epoxy 181.0 10.3 5.96 7.17 0.49 0.28

Kevlar/epoxy 75.9 5.52 1.89 2.28 0.47 0.34

Core

Alloy-foam (isotropic) 0.0459 0.0459 0.0173 0.0173 0.33 0.33

1 ; r; 2 ; u; 3 ; z:
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only, Eq. (14a), seemed to be more accurate. In order to

further examine this premise, the critical load was

calculated for a construction in which the total thickness

remains the same but the face-sheet thickness is increased at

the expense of the core. The results, listed in Table 3, show

that the shear correction formula based on an effective

modulus (which includes the core), Eqs. (14b) and (14c), is

now more accurate.

3.2. Finite element modeling

The ABAQUS [12] finite element code was used for this

part of the research. Two types of elements were used: (i)

shear deformable shell elements and (ii) solid 3D (brick)

elements.

Regarding (i), the ‘thick shell’ element S8R was used.

This is an eight-node element with reduced integration and

it allows large rotations (and small strains). Due to the

symmetry at u ¼ 08 and the anti-symmetry at u ¼ 458; only

one-eighth of the ring need be modeled (a 458 sector).

This part was meshed with 32 elements. A convergence

study showed that no more elements are needed.

Regarding (ii), the 3D ‘brick’ element C3D20R was used.

This is a 20-node reduced integration element. A 908 sector

was meshed with 48 by 2 elements. At u ¼ 08 and at u ¼ 908

there are symmetry boundary conditions. Again, a conver-

gence study showed that no more elements are needed.

The results are shown in Table 4. The results from both

the shell and the solid ‘brick’ elements follow the same

trends. Shell elements give results which are close to the

shear deformable shell theory formula, and the solid brick

elements give results which are closer to the elasticity

solution presented herein. Even in the most demanding case

of R=h ¼ 15; the finite element results with solid elements

are about 6% higher than the benchmark elasticity solution.

But with shear deformable shell elements, the results are

about 10% above the elasticity value. On the contrary, the

shell theory formula is about 20% above the elasticity value.

These differences get smaller as the ratio R=h is increased,

i.e. for thinner shells.

Table 2

Critical pressure in N/m2

R=h Elasticity Classical shella no shear

(% vs elast)

Shell w/shearb based on core

only (% vs elast)

Shell w/shearc based

on �G (% vs elast)

Boron/epoxy faces w/alloy-foam core

15 741,773 6,898,740 (þ930.0%) 651,125 (212.2%) 899,768 (þ21.3%)

30 277,305 862,343 (þ310.9%) 253,721 (28.5%) 323,361 (þ16.6%)

60 70,416 107,793 (þ53.0%) 67,383 (24.3%) 76,087 (þ8.0%)

120 11,817 13,474 (þ14.0%) 11,717 (20.85%) 12,203 (þ3.3%)

Graphite/epoxy faces w/alloy-foam core

15 720,842 5,650,460 (þ783.9%) 637,826 (211.5%) 874,654 (þ21.3%)

30 258,549 706,307 (þ273.2%) 238,236 (27.9%) 298,643 (þ15.5%)

60 61,528 88,288 (þ43.5%) 59,207 (23.8%) 65,825 (þ7.0%)

120 9918 11,036 (þ11.3%) 9829 (20.9%) 10,168 (þ2.5%)

Kevlar/epoxy faces w/alloy-foam core

15 605,472 2,370,590 (þ391.5%) 551,668 (28.9%) 719,856 (þ18.9%)

30 171,351 296,324 (þ72.9%) 162,433 (25.2%) 188,347 (þ9.9%)

60 31,418 37,040 (þ17.9%) 30,712 (22.2%) 32,397 (þ3.1%)

120 4476 4630 (þ3.4%) 4403 (21.6%) 4470 (20.13%)

Geometry: f ¼ 0:1 in:; c ¼ 1:0 in: and B ¼ 3 in:
a Eq. (12).
b Eq. (14a).
c Eqs. (14b) and (14c).

Table 3

Critical pressure in N/m2

R=h Elasticity Classical shell no shear (% vs elast) Shell w/shear based on core only (% vs elast) Shell w/shear based on �G (% vs elast)

Graphite/epoxy faces w/alloy-foam core

15 1,244,010 11,731,900 (þ943.1%) 416,091 (266.6%) 1,501,160 (þ20.7%)

30 393,573 1,466,490 (þ372.6%) 188,038 (252.2%) 542,378 (þ37.8%)

60 105,699 183,311 (þ73.4%) 67,900 (235.8%) 128,553 (þ21.6%)

120 19,297 22,914 (þ18.7%) 16,081 (216.7%) 20,709 (þ7.3%)

Effect of increased face thickness: f ¼ 0:3 in:; c ¼ 0:6 in: and B ¼ 3 in:
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4. Conclusions

An elasticity solution to the problem of buckling of

sandwich long cylindrical shells subjected to external

pressure is presented. The results from this solution are

compared with (i) shell theory results with and without

accounting for the transverse shear effect and (ii) finite

element results by use of the ABAQUS finite element code

and using two types of elements: a shear deformable shell

element and a solid 3D (brick) element. In this study all

constituent phases of the sandwich structure, i.e. the

facings and the core, are assumed to be orthotropic and

the loading is a uniform hydrostatic pressure, which means

that the loading remains normal to the deflected surface

during the buckling process. Results are produced for

laminated facings, namely, boron/epoxy, graphite/epoxy

and kevlar/epoxy laminates with zero deg. orientation with

respect to the hoop direction, and for alloy-foam core. The

results show that the shell theory predictions without

transverse shear can produce highly non-conservative

results on the critical pressure. The elasticity solution

presented herein provides a means of accurately assessing

the limitations of shell theories in predicting stability loss

in sandwich shells.
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