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Abstract

This paper provides a method for obtaining the mixed-mode stress intensity factors for a bi-material interface crack

in the infinite strip configuration and in the case where both phases are fully anisotropic. First, the dislocation solution

in a bi-material anisotropic infinite strip is investigated (the boundary of the strip is parallel to the bi-material interface).

A surface distributed dislocation approach is employed to ensure the traction-free conditions at the strip bounding

surfaces. Subsequently, the derived dislocation solution is applied to calculate the mixed-mode stress intensity factors of

a crack located at, or parallel to, the interface in the bi-material anisotropic infinite strip. The crack itself is modelled as

a distribution of the derived dislocation solutions for the strip. Results are presented and the effects of material mis-

match, the length of the crack and the material interface on the stress intensity factors are investigated.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Anisotropic bi-materials are often encountered in modern technology with the increasing use of com-

posite and sandwich material systems. The fracture behavior at the interface between these dissimilar

materials (namely the different layers of the composite) is a critical phenomenon and frequently the weak

link in the safe and confident use of these modern materials. Determining the stress intensity factors of

interface cracks in anisotropic bi-materials is the first step in predicting the subsequent crack propagation

and damage tolerance. One important point is that the construction with these composite and sandwich

systems typically involves the configuration of more or less thin ‘‘strip’’ geometry, therefore the commonly

encountered in the literature formulations and results on infinite plane or half-plane configurations would
not normally be applicable.

One of the most effective methods in anisotropic fracture mechanics is the distributed dislocation tech-

nique, which is a semi-analytical technique and has been already effectively used by Huang and Kardomateas
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(1999, 2001). The basic idea of this method is to model the crack as an array of dislocations along the crack

line and determine the dislocation densities by satisfying the crack surface traction free conditions. The

mixed-mode stress intensity factors can subsequently be calculated from the dislocation densities.

The cornerstone of this method is the fundamental solution of a dislocation in the corresponding
configuration. Eshelby et al. (1953) and Stroh (1958) are among the pioneers who presented analytical

solutions for a dislocation in general anisotropic materials. Following their work, Ting (1986), and Qu and

Li (1991) studied the classical problem of a dislocation situated at the interface between two anisotropic

elastic half planes and obtained an analytical solution to the dislocation problem. Atkinson and Eftaxio-

poulos (1991) also achieved the solution for a dislocation in an anisotropic half plane and a bi-material

infinite plane, using the basic formulation of Stroh. Bi-material half-planes with a crack located at or

parallel to the interface have been studied by Huang and Kardomateas (2001) by use of the distributed

dislocation technique.
As far as the strip geometry, Civelek and Erdogan (1982) developed a numerical method to calculate the

dislocation solution in an isotropic homogeneous infinite strip by superposing the infinite plane with an

additional elastic field, which is expressed by an Airy stress function with Fourier transformation. Suo

(1990) and Suo and Hutchinson (1990) extended this method to orthotropic materials and calculated the

mixed-mode stress intensity factors for an infinite strip with semi-infinite cracks subjected to edge bending.

Their technique, undoubtedly quite elegant, is limited to orthotropic materials. Huang and Kardomateas

(1999) developed a method to calculate the stress fields of a dislocation in a homogeneous anisotropic

infinite strip and applied the solution to calculate the stress intensity factors for both single edge and double
edge cracks in a fully anisotropic homogeneous infinite strip. But analytical studies of the fully anisotropic

bi-material strip cannot be found in the literature, short of finite element results associated with interla-

minar cracks in composite laminates (Qian and Sun, 1997).

In this paper, first the analytical solution for a dislocation in an anisotropic bi-material infinite plane is

summarized and then the stress field for a dislocation in an anisotropic bi-material strip is obtained by

distributing two dislocation arrays along the traction-free boundaries of the infinite strip. The dislocation

solution for the strip thus derived, is then applied to calculate the mixed mode stress intensity factors for a

crack located at, or parallel to, the interface of the bi-material anisotropic infinite strip. This last step
involves modelling the crack itself as a distribution of the derived dislocation solutions for the strip.
2. Formulation

2.1. Dislocation solution in a bi-material anisotropic infinite plane

The analytical solution for dislocations in a bi-material infinite plane has several different versions.
Almost all of them originate from Stroh�s formulation. Combining the solutions presented by Ting (1986),

Qu and Li (1991), and Atkinson and Eftaxiopoulos (1991), we present first a concise summary of this

elegant analytical solution for a dislocation in a bi-material infinite plane.

In a homogenous anisotropic medium, the constitutives are:
rij ¼ Cijkl
oUk

oxl
; ð1Þ
where i; j; k; l ¼ 1; 2; 3 and the Einstein indices convention applies. Cijkl is the elastic stiffness tensor and it

satisfies: Cijkl ¼ Cjikl; Cijkl ¼ Cijlk.

The equilibrium equations can be written as
orij

oxj
¼ Cijkl

o2Uk

oxloxj
¼ 0; ð2Þ
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which are the partial differential equations governing the stress field of the homogeneous anisotropic

medium.

We can assume the displacement field in the following form, which satisfies Eq. (2):
Uk ¼ Akf ðx1 þ Px2Þ; ð3Þ

provided that the constant Ak satisfies the equations:
ðCi1k1 þ PCi1k2 þ PCi2k1 þ P 2Ci2k2ÞAk ¼ 0: ð4Þ

Ak 6¼ 0 can be found if P is a root of the sextic equation (the determinant of the coefficients of (4)):
j Ci1k1 þ PCi1k2 þ PCi2k1 þ P 2Ci2k2 j¼ 0: ð5Þ

Then the displacements can be written as
Uk ¼
X
a

AkafaðzaÞ þ
X
a

�Aka
�fað�zaÞ; ð6Þ
where
za ¼ x1 þ Pax2 a ¼ 1; 2; 3: ð7Þ

If /i is a function of x1 and x2 and the stresses:
ri1 ¼ � o/i

ox2
; ri2 ¼

o/i

ox1
; ð8Þ
then, because the stresses should satisfy the equilibrium Eq. (3), from Eqs. (1), (7) and (8), we obtain:
/i ¼
X
a

LiafaðzaÞ þ
X
a

�Lia
�fað�zaÞ: ð9Þ
Then the stress components can be expressed as
ri1 ¼ �
X
a

LiaPaf 0
aðzaÞ �

X
a

�Lia
�Pa�f 0

að�zaÞ; ð10Þ

ri2 ¼
X
a

Liaf 0
aðzaÞ þ

X
a

�Lia
�f 0
að�zaÞ; ð11Þ
where Lia is defined by
Lia ¼ ðCi2k1 þ PaCi2k2ÞAka: ð12Þ

All of the above relations are for an anisotropic medium. If there is a single dislocation b ¼ fb1; b2; b3g

located at z0ðx10; x20Þ in the medium, as we require that the stress components at the point of the dislocation
be singular, we can choose a function:
faðzaÞ ¼
1

4p
Majdj lnðza � z0aÞ; ð13Þ
where
z0a ¼ x10 þ Pax20; ð14Þ

bi ¼ Bijdj; ð15Þ

Bij ¼
1

2
i
X
a

ðAiaMaj � �Aia
�MajÞ; ð16Þ

MajLjb ¼ dab: ð17Þ
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Then the displacements are given by
Uk ¼
X
a

Aka

4p
Majdj lnðza � z0aÞ þ

X
a

�Aka

4p
�Majdj lnð�za � �z0aÞ; ð18Þ
and the stresses are given by
ri1 ¼ � 1

4p

X
a

LiaPaMaj
dj

za � z0a

(
þ
X
a

�Lia
�Pa �Maj

dj
�za � �z0a

)
; ð19Þ

ri2 ¼
1

4p

X
a

LiaMaj
dj

za � z0a

(
þ
X
a

�Lia
�Maj

dj
�za � �z0a

)
: ð20Þ
For the anisotropic bi-material infinite plane, as shown in Fig. 1, there is a single dislocation
b ¼ fb1; b2; b3gT located in one of the homogeneous anisotropic media; here we assume it is located in

medium (1). On the interface of the bi-materials, the tractions and displacements should be continuous i.e.:
U ð1Þ
k ðx1Þ ¼ U ð2Þ

k ðx1Þ; ð21Þ

rð1Þ
i2 ðx1Þ ¼ rð2Þ

i2 ðx1Þ: ð22Þ

Since for the homogeneous anisotropic medium (1) we require f ð1Þ

a ðzð1Þa Þ to be singular at zð1Þa ¼ zð1Þ0a when

x2 > 0, and for the medium (2), we require f ð2Þ
a ðzð2Þa Þ to have no singularity when x2 < 0, we can choose:
f ð1Þ
a zð1Þa

� �
¼ 1

4p
M ð1Þ

aj d
ð1Þ
j ln zð1Þa

�
� z0a

�
þ 1

4p

X
b

Eba ln zð1Þa

�
� �zð1Þ0b

�
; ð23Þ

f ð2Þ
a zð2Þa

� �
¼ 1

4p

X
b

Gba ln zð2Þa

�
� zð1Þ0b

�
; ð24Þ
where Eba and Gba are constants depending on the elastic properties of medium (1) and medium (2).

Specifically, from Eqs. (21) and (22), we obtain:
Að1Þ
kbM

ð1Þ
bj d

ð1Þ
j þ

X
a

�Að1Þ
ka
�Eba ¼

X
a

Að2Þ
ka Gba; ð25Þ
  1

2

(x10,x20)

X1

X2

Fig. 1. Dislocation in a bi-material infinite plane.



L. Liu et al. / International Journal of Solids and Structures 41 (2004) 3095–3107 3099
Lð1Þ
ib M

ð1Þ
bj d

ð1Þ
j þ

X
a

�Lð1Þ
ia
�Eba ¼

X
a

Lð2Þ
ia Gba: ð26Þ
From Eqs. (25) and (26) we can determine Eba and Gba, then the displacements and stresses are deter-

mined.

The stress components in medium (1) are written as
ri1 ¼ � 1

4p

X
a

Lð1Þ
ia P

ð1Þ
a M ð1Þ

aj d
ð1Þ
j zð1Þa

�"(
� zð1Þ0a

��1

þ
X
b

Eba zð1Þa

�
� �zð1Þ0b

��1
#)

þ C:C: ð27Þ

ri2 ¼
1

4p

X
a

Lð1Þ
ia M ð1Þ

aj d
ð1Þ
j zð1Þa

�"(
� zð1Þ0a

��1

þ
X
b

Eba zð1Þa

�
� �zð1Þ0b

��1
#)

þ C:C: ð28Þ
where C:C: means complex conjugate.

We assume that the medium (1) and (2) are linear elastic anisotropic materials, therefore we can express

the stress components at z ¼ x1 þ ix2 due to a single dislocation b ¼ fb1; b2; b3gT at z0ðx10; x20Þ as

rijðx1; x2; x10; x20Þ ¼ Fijðx1; x2; x10; x20Þbðx10; x20Þ; ð29Þ
where
Fijðx1; x2; x10; x20Þ ¼ ½f1ijðx1; x2; x10; x20Þ; f2ijðx1; x2; x10; x20Þ; f3ijðx1; x2; x10; x20Þ�; ð30Þ

bðx10; x20Þ ¼ fb1ðx10; x20Þ; b2ðx10; x20Þ; b3ðx10; x20ÞgT: ð31Þ
The physical meaning of flijðx1; x2; x10; x20Þ is that they are the stress components rij due to a unit dis-

location blðx10; x20Þ; therefore we can calculate flijðx1; x2; x10; x20Þ from Eqs. (27) and (28) by setting
blðx10; x20Þ ¼ f1; 0; 0gT, f0; 1; 0gT, f0; 0; 1gT, respectively.

2.2. Dislocation solution in a bi-material anisotropic infinite strip

The bi-material infinite strip configuration shown in Fig. 2 consists of two anisotropic homogenous

infinite strips of thickness h and H , respectively. The free boundaries are parallel to the material interface.
Fig. 2. An infinite strip as a distribution of dislocation arrays at the free boundaries.
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The basic idea of obtaining the dislocation solution for the infinite strip is to apply two dislocation arrays

along the free boundaries of the strip respectively. The densities of the dislocation arrays are determined in

such a way that the tractions along the boundary due to a single dislocation and the dislocation arrays

cancel out, therefore the boundaries are traction free.
The dislocation b0 ¼ fb1; b2; b3gT is located at an arbitrary point z ¼ x10 þ ix20. The geometry of a dis-

location in the infinite strip can be decomposed into two configurations; the first one is a single dislocation

located in the bi-material infinite plane. The dashed lines stand for the free boundaries of the infinite strip,

which is supposed to be traction free. Then the traction forces along the dashed line due to the single

dislocation b0ðx10; x20Þ can be determined from Eq. (29):
rðsÞ
ij xð1Þ1 ; h; x10; x20
� �

¼ Fij xð1Þ1 ; h; x10; x20
� �

b0ðx10; x20Þ; ð32Þ

rðsÞ
ij xð2Þ1 ;
�

� H ; x10; x20
�
¼ Fij xð2Þ1 ;

�
� H ; x10; x20

�
b0ðx10; x20Þ; ð33Þ
where ij ¼ 21; 22; 23.
The second geometry is also the infinite plane with two dislocation arrays located along the supposed-to-

be free boundaries of the infinite strip. In order to satisfy the traction free condition along the boundaries of

the infinite strip, the tractions along the dashed lines in the second geometry should cancel out due to the

single dislocation and the two dislocation arrays.

Assume the two dislocation arrays are distributed from +1 to )1, and then the stress components

along the dashed line x2 ¼ þh due to the two dislocation arrays can be calculated as
rðarrayÞ
ij xð1Þ1 ;

�
þ h

�
¼

Z þ1

�1
Fij xð1Þ1 ;

�
þ h; s;þ h

�
bþhðs;þhÞdsþ

Z þ1

�1
Fij xð1Þ1 ;

�
þ h; s;� H

�
b�H ðs;�HÞds:

ð34Þ

These should cancel out by the traction forces due to the single dislocation b0ðx10; x20Þ, therefore:
rðarrayÞ
ij xð1Þ1 ;

�
þ h

�
¼ �rðsÞ

ij xð1Þ1 ;
�

þ h
�
: ð35Þ
Similarly
rðarrayÞ
ij xð2Þ1 ;

�
� H

�
¼

Z þ1

�1
Fij xð2Þ1 ;

�
� H ; s;þ h

�
bþhðs;þhÞdsþ

Z þ1

�1
Fij xð2Þ1 ;

�
� H ; s;� H

�
b�Hðs;�HÞds:

ð36Þ

Eqs. (34) and (36) are sets of singular integral equations. Gaussian quadrature is adopted to solve these

equations numerically, and then the singular integral equations can be reduced to a set of algebraic

equations. More detail derivation of the numerical solution of singular integral equations can be found in

Hills et al. (1996). Eqs. (34) and (36) can be united and written in a matrix form:
p
�Fij xð1Þ1;k ;þh; sm;þh
� �

�Fij xð1Þ1;k ;þh; sm;�H
� �

�Fij xð2Þ1;k ;�H ; sm;þh
� �

�Fij xð2Þ1;k ;�H ; sm;�H
� �

2
4

3
5 h �Wmi

�bþhð�sm;þhÞ
�b�H ð�sm;�HÞ

� �
¼

�rðsÞ
21 xð1Þ1;k ;þh
� �

�rðsÞ
22 xð1Þ1;k ;þh
� �

�rðsÞ
23 xð1Þ1;k ;þh
� �

�rðsÞ
21 xð1Þ1;k ;�H
� �

�rðsÞ
22 xð1Þ1;k ;�H
� �

�rðsÞ
23 xð1Þ1;k ;�H
� �

2
66666666666664

3
77777777777775
; ð37Þ
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p
�Fij xð1Þ1;k ;þh; sm;þh
� �

�Fij xð1Þ1;k ;þh; sm;�H
� �

�Fij xð2Þ1;k ;�H ; sm;þh
� �

�Fij xð2Þ1;k ;�H ; sm;�H
� �

2
4

3
5

¼

�F21 xð1Þ1;k ;þh; sm;þh
� �

�F21 xð1Þ1;k ;þh; sm;�H
� �

�F22 xð1Þ1;k ;þh; sm;þh
� �

�F22 xð1Þ1;k ;þh; sm;�H
� �

�F23 xð1Þ1;k ;þh; sm;þh
� �

�F23 xð1Þ1;k ;þh; sm;�H
� �

�F21 xð2Þ1;k ;�H ; sm;þh
� �

�F21 xð2Þ1;k ;�H ; sm;�H
� �

F22 xð2Þ1;k ;�H ; sm;þh
� �

�F22 xð2Þ1;k ;�H ; sm;�H
� �

F23 xð2Þ1;k ;�H ; sm;þh
� �

�F23 xð2Þ1;k ;�H ; sm;�H
� �

2
66666666666664

3
77777777777775
; ð38Þ
where
�Wm ¼ Wm
1þ �s2m

1� �s2m
� �2

; x1;k ¼
�tk

1��t2k
; sm ¼ �sm

1� �s2m
: ð39Þ
In this case, �bþhð�sm;þhÞ and �b�Hð�sm;�HÞ are bounded at both ends of the integral, From Hills et al. (1996),

the integration points �sm, the collocation points �tk and the weight coefficients Wm can be calculated as
�sm ¼ cos
pm

N þ 1
; ð40Þ

�tk ¼ cos
pð2k � 1Þ
2N þ 1

; ð41Þ

Wm ¼ ð1� �s2mÞ=ðN þ 1Þ: ð42Þ

where k ¼ 1; 2; 3; . . . ; ðN þ 1Þ; m ¼ 1; 2; 3; . . . ;N and N is the number of integration points. More detailed

derivation of the numerical quadrature schemes for the solution of singular integral equations can be found

in Hills et al. (1996). From Eq. (29), we can calculate Fijðxð1Þ1;k ;þh;�sm;þhÞ, Fijðxð1Þ1;k ;þh;�sm;�HÞ,
Fijðxð2Þ1;k ;�H ;�sm;þhÞ and Fijðxð2Þ1;k ;�H ;�sm;�HÞ.

From Eq. (37), we can obtain the dislocation arrays densities
�bþhð�sm;þhÞ
�b�Hð�sm;�HÞ

� �
, which are related to the

single dislocation b0ðx10; x20Þ.
For convenience, we normalize the results. Denote the dislocation densities along x2 ¼ þh as �bþh1 due to

b01 ¼ f1; 0; 0gT, �bþh2 due to b02 ¼ f0; 1; 0gT and �bþh3 due to b03 ¼ f0; 0; 1gT respectively. Similarly, we de-

note the dislocation densities along x2 ¼ �H as �b�H1 due to b01 ¼ f1; 0; 0gT, �b�H2 due to b02 ¼ f0; 1; 0gT and
�b�H3 due to b03 ¼ f0; 0; 1gT. Superposing the two elastic fields in Fig. 2, we can obtain the stress field for a

single dislocation b0 ¼ fb1; b2; b3gT located at an arbitrary point Z ¼ x10 þ ix20 in the infinite strip as
rijðx1:x2Þ ¼ �Fijðx1; x2; x10; x20Þbðx10; x20Þ; ð43Þ

where
�Fijðx1; x2; x10; x20Þ ¼ ½�f1ijðx1; x2; x10; x20Þ; �f2ijðx1; x2; x10; x20Þ; �f3ijðx1; x2; x10; x20Þ�; ð44Þ

�flijðx1; x2; x10; x20Þ ¼ flijðx1; x2; x10; x20Þ þ ½�Flijðx1; x2; sm;þhÞ; �Flijðx1; x2; sm;�HÞ�

� h �Wmi
�bþhlð�sm;þhÞ
�b�Hlð�sm;�HÞ

� �
: ð45Þ
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The first part of Eq. (45) is the stress components due to a single dislocation b0 ¼ fb1; b2; b3gT located at

an arbitrary point z ¼ x10 þ ix20 in the infinite plane; the second part is the stress components due to the two

free boundaries of the infinite strip. The stress components of the infinite strip due to a single dislocation

can be obtained by superposing the two parts together.

2.3. Mixed-mode stress intensity factors for interface cracks and cracks parallel to the interface in a

bi-material infinite strip

A crack of length 2a in an infinite strip is shown in Fig. 3. The crack is parallel to the interface at a

distance yt. We denote T21, T22 and T23 the external load distributing along the crack surface location. Cracks

can be modelled as a dislocation array with the dislocation densities bðs; ytÞ.
The tractions along the crack surfaces due to the dislocation array are:
rc
ijðx1; ytÞ ¼

Z þa

�a

�Fijðx1; yt; s; ytÞbðs; ytÞds; ij ¼ 21; 22; 23; ð46Þ
which should be equal and opposite to the external loads T21, T22 and T23, in order to satisfy the traction free
condition on the crack surfaces. We use the Gaussian formula to solve Eq. (46); then the singular integral

equation can be transformed to 3ðN � 1Þ linear algebraic equations as
pa�Fijðx1;k; yt; sm; ytÞhWmi�bcrackð�sm; ytÞ ¼ �Tijðx1;k; ytÞ; ij ¼ 21; 22; 23; ð47Þ

where sm ¼ a�sm, x1;k ¼ a�tk.

Because the dislocation densities at the limits of the integration Eq. (46) are singular, that is to say there
exists singularity at the ends of the crack, the integration points �sm, the collocation points �tk and the weight

coefficients Wm are (Huang and Kardomateas, 2001):
�sm ¼ cos½pð2m� 1Þ=2N �; m ¼ 1; 2; 3; . . . ;N ; ð48Þ

�tk ¼ cosðpk=NÞ; k ¼ 1; 2; 3; . . . ;N � 1; ð49Þ
Fig. 3. A crack in an infinite strip.
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Wm ¼ 1=N ; ð50Þ

where N is the number of the integration points we choose on the surfaces of the crack.

In order to satisfy the conditions that the crack surfaces physically come together at both ends, there are

three equations:
XN
m¼1

Wm
�blð�sm; ytÞ ¼ 0; l ¼ 1; 2; 3: ð51Þ
From the Eqs. (47)–(51), we can calculate the dislocation densities �bð�sm; ytÞ at these N integration points

along the crack surfaces. The crack tip dislocation densities can be extrapolated from these N integration

points as
�blð1; ytÞ ¼ ME

XN
m¼1

bðþ1Þ
E

�blð�sm; ytÞ; ð52Þ

�blð�1; ytÞ ¼ ME

XN
m¼1

bð�1Þ
E

�blð�sNþ1�m; ytÞ; ð53Þ
where
bðþ1Þ
E ¼ sin

2m� 1

4N
pð2N

�
� 1Þ

��
sin

2m� 1

4N
p

� 	
; ð54Þ

bð�1Þ
E ¼ bðþ1Þ

E ; ME ¼ 1

N
: ð55Þ
l ¼ 1; 2; 3 (Hills et al., 1996).

The stress intensity factors at the crack tip can be calculated as (Huang and Kardomateas, 2001):
Kð�1; ytÞ ¼ ½KII;KI;KIII�T ¼ �
ffiffiffiffiffiffi
pa

p

2
Re Lia Majdjð

"(
� 1; ytÞ þ dðytÞ

X3

j¼1

Eajð � 1; ytÞ
#)

; ð56Þ
where Re½ � stands for the real part of a complex variable and dðytÞ is the Dirac delta function. Eaj and dj are
solved from Eqs. (25), (26) and (15).
3. Results and discussion

First, we can validate the results by assuming a homogeneous material and selecting h � H , which

would be essentially a homogeneous anisotropic half plane, since the analytical solution for a dislocation in

a homogenous anisotropic half plane is presented by Atkinson and Eftaxiopoulos (1991). Cross-ply

composite materials are studied in the paper. The elastic material properties for graphite/epoxy were taken

from Huang and Kardomateas (2001). We list the material properties in Table 1. The fiber orientation is
defined as the angle between the x1 direction and the laminate�s longitudinal direction.
1

al properties for graphite/epoxy laminate

134:45 GPa, ET ¼ 11:03 GPa, EN ¼ 11:03 GPa

¼ 5:84 GPa, GLN ¼ 5:84 GPa, GTN ¼ 2:98 GPa

¼ 0:301, lLN ¼ 0:301, lTN ¼ 0:49

e longitudinal direction (fiber direction), T the transverse direction, and N the normal direction.
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The convergence of the numerical integration method is very important, therefore, this is our first check.

The results are listed in Table 2. A 45� homogeneous laminate is used in the analysis. In order to check the

results with the analytical solutions obtained by Atkinson and Eftaxiopoulos (1991), we assume one of the

boundaries located at x2 ¼ 1:0� 109; and the other free boundary located at x2 ¼ �1:0. The dislocation
solutions of the infinite strip can be compared with a half plane because h � H . We assume a single dis-

location b ¼ f1; 0; 0gT located at z0 ¼ 0. We check the stress components at the arbitrary points z ¼ 1, 5, 10.

From Table 2, we can see that the convergence of this method is very satisfactory. The results agree very

well with the analytical solutions.

In order to further check the validity of this method, we assume a bi-material, but we take both h and H
very large, therefore approaching an infinite bi-material plane. The analytical solutions for a single dis-

location in a bi-material anisotropic infinite plane are known (Atkinson and Eftaxiopoulos�s, 1991).

Therefore, in Table 3, we show the comparison of the present solutions with corresponding analytical
results. We assume two free boundaries located at x2 ¼ 1:0� 109, and x2 ¼ �1:0� 109 respectively. The

dislocation solutions from this limiting case of the infinite strip compare well with the analytical solutions of

the infinite plane. The material is chosen to be 0�/90�. We assume a single dislocation b ¼ f0; 1; 0gT located

at z0 ¼ 1. We check the stress components of eight points around z0. The number of integration points N is

300. The present results agree also very well with the analytical solutions.

Now we analyze next the mixed-mode stress intensity factors for an infinite strip. We assume the free

boundaries located at x2 ¼ þ5 and x2 ¼ �5 respectively. In order to simplify the results, we normalize the
Table 2

Convergence of stresses for a dislocation in homogeneous infinite strip material: 45�/45�, H ¼ 1, h ¼ 1:0� 109, dislocation

b ¼ f1; 0; 0gT located at z0 ¼ 0

Stresses z ¼ x1 þ ix2 Number of integration points N Atkinson and

Eftaxiopoulos

(1991)
10 50 100 150 200 250

r21 1 1.6251 1.6333 1.6333 1.633 1.6333 1.6333 1.6333

5 0.2732 0.2471 0.2547 0.255 0.255 0.255 0.255

10 0.1009 0.0489 0.0613 0.0644 0.0652 0.0654 0.0655

r22 1 )0.1536 )0.1536 )0.1634 )0.1634 )0.1634 )0.1634 )0.1634
5 0.0214 0.0552 0.0524 0.0521 0.0521 0.0521 0.0521

10 )0.0293 0.0197 0.0142 0.0109 0.0096 0.0091 0.0089

r23 1 )0.959 )0.9607 )0.9607 )0.9607 )0.9607 )0.9607 )0.9607
5 )0.1854 )0.1706 )0.1717 )0.1717 )0.1717 )0.1717 )0.1717
10 )0.0619 )0.0427 )0.0467 )0.0473 )0.0474 )0.0474 )0.0474

Table 3

Comparison between present method and analytical solution of Atkinson and Eftaxiopoulos (1991) material: 0�/90�,
h ¼ H ¼ 1:0� 109, dislocation b ¼ f0; 1; 0gT located at z0 ¼ 1

z ¼ x1 þ ix2 Present Analytical solution

r21 r22 r23 r21 r22 r23

0.0) 0.5i )0.1516 )1.0913 0.0000 )0.1516 )1.0913 0.0000

0.5) 0.5i 0.0985 )1.9325 0.0000 0.0985 )1.9325 0.0000

1.0) 0.5i 2.0310 0.0000 0.0000 2.0310 0.0000 0.0000

1.5) 0.5i 0.0985 1.9325 0.0000 0.0985 1.9325 0.0000

0.0+ 0.5i 0.1005 )1.0658 0.0000 0.1005 )1.0658 0.0000

0.5+ 0.5i )0.3467 )1.6843 0.0000 )0.3467 )1.6843 0.0000

1.0+ 0.5i )2.0310 0.0000 0.0000 )2.0310 0.0000 0.0000

1.5+ 0.5i )0.3467 1.6843 0.0000 )0.3467 1.6843 0.0000
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external loads as fT21; T22; T23gT ¼ f1; 1; 1gT. We check the stress intensity factors for the right crack tip.

Fig. 4a shows the mode-I stress intensity factors for the interfacial crack in the infinite strip with the length

of the crack from 0.5 to 5. The stress intensity factors are normalized as �K ¼ K=ðr
ffiffiffiffiffiffi
pa

p
Þ, where r is the

external tensile load.
From the Fig. 4a, we can see that the material combination affects the mode-I stress intensity factor. The

homogenous 0� material has the lowest mode-I stress intensity factor and the 90� material has the highest;

the mode-I stress intensity factors are very close to each other for the homogeneous 45� material and the

45�/)45� bi-material.

The mode mixities w are defined as
Fig. 4.

crack l
wII ¼ tan�1ðKII=KIÞ; wIII ¼ tan�1ðKIII=KIÞ
In Fig. 4b and c, we show the mode mixities wII and wIII, respectively, as a function of the length of the

crack. The mode mixities decrease as the crack length increases. Regarding the mode-II mixity, in general
(a) Normalized mode-I stress intensity factor for a crack located at the interface of a bi-material strip. (b) Mode-II mixity for a

ocated at the interface of a bi-material strip. (c) Mode-III mixity for a crack located at the interface of a bi-material strip.



Fig. 5. (a) Normalized mode-I stress intensity factor for a crack parallel to the interface in a bi-material strip. (b) Mode-II mixity for a

crack parallel to the interface in a bi-material strip.
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the homogeneous materials has lower values compared with bi-material. Moreover, the homogeneous 90�
material has the lowest mode-II mixity compared with the other homogeneous materials (0� and 45�.
Regarding the mode-III mixity, it also decreases as the crack length increases; the 0� homogeneous case

shows the highest mode-III mixity and the 45�/)45� bi-material has in general the lowest mode-III mixity

compared with the other material combinations.
Fig. 5a,b shows the stress intensity factors for cracks parallel to the material interface. The vertical

distance between the crack tip and the interface is yt, shown in Fig. 3. The crack length is 2 and the vertical

distance is from 1.0 to )1.0. The normalized external load is fT21; T22; T23gT ¼ f1; 1; 1gT. We compare three

anisotropic materials: the 0� and 90� homogeneous materials and the 00=900 bi-material. From the figures,

we can see that the normalized mode-I stress intensity factor and mode-II mode mixities vary smoothly for

the homogenous materials; however for the bi-material, they change drastically near the interface. When

the crack is far away from the interface, the mode I SIF of the bi-material approaches that of the

homogenous materials. The mode II mode mixities of the homogeneous materials are smaller than that of
the bi-materials. The mode mixity of the interfacial crack is smaller than that of cracks located near the

interface for the bi-material. These trends are similar to the ones observed by Huang and Kardomateas

(2001) for the bi-material half plane.

Finally, it should be mentioned that the dislocation method presented in this paper can be extended to

solve crack problems in bi-material finite-sized geometries, provided the anisotropic material is elastic and

superposition is valid. In this case, the dislocation-based boundary element method (BEM) can be used, as

outlined for the case of a homogeneous body by Huang and Kardomateas (2003).
4. Conclusions

Solutions for the stress intensity factors of cracks in a bi-material anisotropic infinite strip are derived
based on the analytical dislocation approach. The accuracy and convergence are verified by considering the

limits of a half plane and an infinite plane (i.e. for a very large thickness of the strip) and for the homo-

geneous case (i.e. the two materials to be identical), for which solutions already exist. We use the method to
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calculate the stress fields and the stress intensity factors for interfacial cracks and for cracks parallel to the

interface. The following specific conclusions are drawn:

(1) The material combination affects the mode-I stress intensity factor and the mode mixities. The homo-
genous 0�material has the lowest mode-I stress intensity factors and the 90�material has the highest. As

far as the mode mixities, the homogeneous 90� material has the lowest mode-II mixity and the 45�/)45�
bi-material has the lowest mode-III mixity.

(2) For the cracks parallel to the interface, the mode-I and II SIFs change abruptly through the interface;

the mode-II mixity of an interfacial crack is smaller than cracks near the interface.
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