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Abstract

Thermal fields may exist in addition to mechanical loading, for example, due to short term exposure to fire. In this
paper, the branching of cracks in the presence of combined thermal and mechanical loads is investigated for general
anisotropic media by employing the theory of Stroh’s dislocation formalism, extended to thermo-elasticity in matrix
notation. A general solution to the thermo-elastic crack problem for an anisotropic material under arbitrary loading
is obtained in a compact form. Green’s functions are also presented for a thermal dislocation (heat vortex) and a con-
ventional dislocation (or, referred as mechanical dislocation), which are formulated considering the cuts located at an
arbitrary angle with respect to the x; axis of the coordinate system (xy,x,,x3). Using the derived compact expressions,
the interaction between the crack and the dislocation is studied and a closed form solution for this interaction is
obtained. The branching portion of the thermo-elastic crack is modelled as a continuous distribution of dislocations.
This problem is then converted into a set of singular integral equations. Numerical results are presented to illustrate
the possible effects of thermal loading on the propagation of the branched crack.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Cracks and defects in engineering structures may be introduced during manufacturing or during service,
e.g. from impact loading. A local temperature gradient, which would induce a local thermal stress concen-
tration around these defects, could be generated when such structures are exposed to the flow of heat such
as from short-term fire.
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Within the last decade, the thermal stress effects on structures have drawn great interest because of the
widespread application of composites or metallic materials to high speed flight engine components, aer-
ospace structures, nuclear source energy generators, etc. All these structures often operate under extre-
mely high temperature variations. Studies for steady thermo-elastic effects on solids with defects can be
generally classified as falling into the categories of either monolithic isotropic/anisotropic media or iso-
tropic/anisotropic bi-material media. Florence and Goodier (1963) used the method of dual integral equa-
tions to obtain a solution for isotropic infinite plane with penny-shaped insulated crack. Atkinsion and
Clements (1972, 1983) employed the Fourier transformation method and complex variable techniques,
respectively, to study the thermo-elastic problem of monolithic anisotropic materials (Atkinsion and Cle-
ments, 1972) and the thermo-elastic effects on the dissimilar anisotropic media with an assumed interface
crack (Atkinsion and Clements, 1983). Sturia and Barber (1988) extended Dundurs and Comninou’s
(1979) isotropic thermo-elastic Green’s functions to simulate the crack in an anisotropic medium under
thermal loading. There are also many other authors who have done extensive research on the thermo-elas-
tic effect on cracked bodies. Among them are Hwu (1990) on an insulated elliptic hole or crack in a
monolithic anisotropic medium, Herrmann and Loboda (2001) on an interface crack in anisotropic bi-
materials, etc.

However, in contrast to the thermo-elastic straight crack or interface crack problem, very few papers can
be found on the thermo-elastic crack branching or kinking problems due to the complicated coupling or
interaction between thermal effects and mechanically loading. In our literature search, only two papers were
available for this problem, one by Hasebe et al. (1986) using rational mapping to the curved crack in an
isotropic infinite plate and the other by Chao and Shen (1993) using the extended Muskhelishvili’s
(1953) techniques to the curved interface crack of dissimilar isotropic media. It can be seen that both these
papers dealt with isotropic media only and actually, it may not be possible to be directly extended to aniso-
tropic media because of the difficulty of finding a similar rational mapping function for anisotropic media.
Therefore, the crack branching problem for either monolithic anisotropic or dissimilar anisotropic bi-media
under thermo-mechanical loading has not been adequately studied yet.

In this paper, an analysis of thermo-elastic crack branching for a general anisotropic material is pre-
sented based on the extended Stroh’s (1958) dislocation formalism and the approaches developed by Li
and Kardomateas (2001). A solution to the stress and temperature functions for arbitrary thermo-mecha-
nical loading is derived by using the analytic continuation principle of complex functions. It should be men-
tioned that in the literature, the Green’s functions for dislocations were usually given in the (xi, x5, x3)
coordinate system, i.e. the dislocation components were evaluated along the x; (i =1,2,3) direction of a
Cartesian coordinate system. This is apparently not convenient for the study of crack branching. In this
work, the Green’s functions for thermal dislocation (heat vortex) and conventional dislocation are formu-
lated in the (r, 0, x3) coordinate system. Thus, a closed form solution is obtained for the interaction between
the crack and these dislocations. The modelling of the crack branched portion by a continuous distribution
of heat vortex and mechanical dislocations leads to two sets of coupled singular integral equations in terms
of the heat vortex density and the mechanical dislocation density. Numerical results for some typical mate-
rials are given to demonstrate the thermal effects on the propagation of the crack branch. It should also be
mentioned that in the derivations in this paper, the dual coordinate systems are used alternatively to deal
with the complexity of the crack branching problem.

2. Basic thermo-anisotropic elasticity formulas
Summarized in this section are some basic equations for thermo-anisotropic elasticity. In a fixed Carte-

sian coordinate system (x1, X», X3), let us consider an anisotropic elastic medium, in which the displacements
u;, the stresses o;; and the temperature fields are independent of x3. The heat flux can be expressed as
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or

hi == _klja
J

(i,j=1,2,3), (1)
where k; = k;; are the coefficients of heat conduction.
The stress—strain law in the presence of thermal fields can be expressed in the following form:

Ouy ..
Gij:Cffk/a__ﬁijT (17]7kvl: 1727 3)7 (2)
X]
where ¢ is the elastic moduli tensor with properties of ¢;u; = ¢jixs = ¢ = ¢ and fj; are the stress-tem-
perature coefficients; the repeated indices imply summation. Equilibrium and conservation of energy lead to

. 621/{]( oT
Oijj = 0, 1e, Cijki m - ﬁl;;a—xj =0, (3)
and
Oh; o'T
— = ie. ii—— = 0. 4
@x,» O, 1e Y a.xlax/ 0 ( )

For the plane system, a non-trivial displacement and temperature distribution 7{(xy, x;) solving Egs. (3)
and (4) with the corresponding stress function may be written as

u=A ¢(z,) + X¢(za> + Cy(z.) + 6;{(21), T(x1,%2) = 7'(z:) + X/(Tf)>

@ =B(z,) + Bd(z,) + Dy(z.) + D y(z.), (5)

where A = [a,a;,a3] and B = [by, b,,b3] are 3 x 3 matrices; C and D are 3 x 1 vectors; y(z.) is a scalar func-
tion and ¢(z,) is a function vector such that

P(z2) = ((fz))g;  (((z2))) = diag[f(z1),(z2),f(z3)], (6)

in which, f(z,) and q, respectively, are unknown functions and constants to be determined for a given prob-

lem; z, = x1 + p,xo(e = 1,2,3) and z, = x; + 1x5; the overbar ( ) denotes the conjugate of a complex var-
iable, the prime (') denotes differentiation with respect to z, or z,. The constant t is the root with positive
imaginary part of the equation

k22‘L'2 + 2k12‘£’ + k11 =0. (7)

The p,, a, b, ¢ and d are constants which satisfy the following equations:

BBl =Bl == welle) ®

where Ny = —T'R", N =T"', Ny=RT'R" — Q; the superscript “T” stands for the transpose of a ma-
trix and

(B1); =Ba, (Bo)i=Bn Ou=can, Rax=cua, Ta=coa 9)
The stresses can be written in term of stress functions (Stroh, 1958) as

09 09
— = Op = .
6)(72 ’ 2 6x1

gj1 =

(10)
The heat flux then becomes

hi = _(kil + ‘Ckiz)){”(ZT) - (kil +fk,-2)X”(ZI). (11)
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Let k = kpn(t —7)/2i, then k = m and

hy = ikty"(z.) — ikty"(z.), hy = —iky"(z.) + iky"(z.). (12)
Next, we define three matrices as
H =2i44", L= -2iBB", S=i(24B" —1I), (13)

which are real as shown in Stroh (1958); also /= diag[1,1,1] is a unit matrix.
From the orthogonality of the eigenvectors of Eq. (8), it is easy to verify the following identity:

el -0

3. The general solution to the thermo-elastic crack in an anisotropic material

In this section, a solution as well as the method leading to the solution, for a crack in an anisotropic
medium under a combined thermal and mechanical loading, is presented in detail. And it can be seen that
the general solution given here, lays the foundation for the study of the thermo-elastic crack branching phe-
nomena (Fig. 1).

Let us assume a crack to be located in the region a < x; < b, —oo < x3 < 0o of the plane x, = 0. A heat
flux /19 and o7} is applied at infinity. By the superposition principle, the boundary conditions for this prob-
lem can be written as

hz(xl,x2:0+) :—h(xl); hz(xl,X2:07) = —h(xl), a<x1 <b, X2:0,

on(x1,x0 =0") = -0 (x1) = —p(x1), a<x;<b, x,=0,

On(x1,x=0") = -0 (x1) = —p(x1), a<x; <b, x,=0,
h, =0, o0;=0 at infinity. (15)
If we denote y”(x1,x2) = y/L(x1) as x, — %0, then substitution of Eq. (11) in Egs. (15); and (15), yields
ik, (1) KT (1) = —h(x)),  —ikr (n) + KT () = —h(v)), @ <x <b. (16)
O B
X2

Fig. 1. A thermo-elastic crack in an anisotropic medium.
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Subtraction of (16); from (16), leads to

A) + 74 ) =20 n) + 70 (x), a<x <b. (17)
This equation implies that if we define a function
0(z) = 1'(2) +7'(2), (18)

which is analytical in x, > 0 and x, < 0, respectively, then, it is continuous across the plane x, = 0. Thus this
function is continuous in the whole space. From the principle of analytic continuation (Muskhelishvili,
1992), O©(z) is analytical in the entire space. Since @(z) is finite at infinity, by the Liouville theorem (Rudin,
1987) we conclude that

O(z) =0 for all z. (19)
Therefore, the summation of (16); and (16), gives
K[y (e) + 1 (x1)] = —ih(xy), a<x; <b. (20)
A general solution to this equation may take the following form (Muskhelishvili 1953):
p X(z) /h X (1) (=i)h(xr) / Vi —a)(b—x)
1 \Z) = —— 21
1) 2m J, x1—z k : 2mk\/z—a (z—b X1 —z @)

where Egs. (18) and (19) were used for x, — +0, and

1
Xz)=—mr———. 22
(2) EEEE (22)
For constant heat flux, A(x;) = Ay, the above solution becomes
1" ho zZ— (a + b)/2
) = |l - —=. 23
£ = l z—a)z—b) -
Integrating this equation gives
/ ho
1) = k= VE—a)E— b))

7(2) :% [22_ <z_‘“2Lb> C—a)z—b)— <a;b)2log <z—(“2+b)+ (z—a)(z_b)ﬂ,
(24)

where a constant which plays no role in the sequel section, was omitted. The corresponding temperature
field is

T(x1,x:) = 2Re[// ()] = %Im [z e a)— b)] . (25)

Next, from the boundary conditions (15); 4, we obtain

B¢, (n) +B§_(x1) + Dy (x1) + DF_(n) = —p(x1),
B¢ (x1) + B, (x1) + Dy (x1) + D7, (x1) = —p(x1), a<x <b. (26)
Subtraction of (26), from (26), yields

B¢, (x)) — B, (x1) + Dy, (x1) — D7, (x1) = B (x)) — BS_(x1) + Dy (x1) — DF_(x1). (27)



1096 R. Li, G.A. Kardomateas | International Journal of Solids and Structures 42 (2005) 1091-1109

If define a function

O(z) = BY'(z) — B¢ (z) + Dy (z) — D7 (2), (28)

which automatically satisfies the condition (27) and is analytical in the plane x; > 0 and x; <0, respectively,
then by an argument similar to the one in obtaining Eq. (19), the application of the principle of analytic
continuation leads to

O(z) =0 forallz (29)
Then, one can have the following conditions:
B (x)) + D (x1) =BG, (1) + DZ,(x1), BY.(11) + Dy (v1) = BP_(x) +D7_(x1). (30)
Summation of (26); and (26), and making use of (30) leads to
B¢, (x1) + ¢Z(x))] + DI (v1) + 7 (x1)] = —p(x1), a<x <b. (31)

Once the function y'(z) is known, Eq. (31) can be solved since B is non-singular as can be seen from Sec-
tion 2. A solution which vanishes at infinity may be written as

¥ =20 / X0 oy, (32)

2mi X —z

where

z,—a

X(z,) = << ( l)(za = b)>>, glx) = =B [p(x)] + D[y, (v1) + 7-(x)], a<xi<b. (33)

If the applied thermal and mechanical loadings p(x;) = py and h(x;) = ho are constants, then a closed
form expression can be obtained:

1 h
¢'(z) = _EH(Z)B_IPO - E(Z)B‘lDzjgia (34)

H(Zd):]_<< z,— (a+b))2 >>
(z, — a)(z, — b)

Integration of (34) gives

#6) = 3 {2~ Ve @ 5))B 'py

~((z- (=+"S)ve-aE-n) )5 g (36)

In general, the heat flux function and the stress functions can be found from Egs. (21) and (32) provided
the boundary conditions are known. In particular, with Egs. (23), (24) and (34), the explicit solutions for
the heat flux and stresses can be determined at any point in the cracked elastic solid under constant com-
bined thermo-mechanical applied loading. For the convenience of sequel derivation, let us introduce a
cylindrical coordinate system (7,0, x3) and denote

(83

B e Rt Ve R CRt) WA AN
() = (=) << 2 b >> 35

oy = cost+p,sinb, g =cosb+t sind. (37)
Then

Zy = X1 F X0 =Ty, Ze =X W =),  F= /X + X5 (38)
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Substitution of Eq. (23) into (12) leads to a heat flux normal to the 0 plane as

Tl — (a+b)/2
A0) (1 V ey — a)(rhg) — b)ﬂ . ”

From Eqgs. (24);, (34) and (10), the following expressions can be obtained for the tractions on the 0 plane:

K (r, 0) = 2kRe[—il) " (rA@)] = —hoRe

a ! !
€(r,0) = =2 = 2Re[B¢' gy + D' A0)]

o
= —Re[BH(”#(O))<<.“(0)>>B_1]Po - %Im[BE(W(m)<<#(0>>>B_1D]
+ %Im |:)L(0)D(r;b(0) - \/(l"l(()) - a) (I”/l(()) - b))i| 5 (40)

where the superscript “c”” denotes the corresponding values induced by the main crack.
The stress components on the 0 plane can be calculated from the tractions as

[Uee,are,ffw]T = Qgtg(’”, 0), (41)
where

cosf sinf 0
Qg = | —sinf cos 0. (42)
0 0 1

4. The thermo-elastic interaction between the crack and a dislocation in an anisotropic medium

The introduction of a dislocation into an elastic medium under thermal loading may cause a discontinu-
ity of temperature across the cut plane of the conventional (or mechanical) dislocation. This temperature
discontinuity has been referred to as thermal dislocation [or heat vortex (Dundurs and Comninou, 1979)]. If
a crack already exists within the medium, then there will be an interaction between this crack and the dis-
location. In this section, a solution for this interaction will be presented in closed form.

For the convenience of derivation, let a new coordinate system (&,#,x3) be introduced by rotating the
original coordinate system by an angle w with respect to the x5 axis, and another associated cylindrical

coordinate system (r,,x3) with = 1/ & + 52 and ¥ measured from &> 0, # = 0. Define

Ct:rf/{,;, ;»19 :COS’[?—{-?E'Sil’lﬁ; Coc :rﬁﬂa ﬁﬂ :COSﬁ—’—ijaSin’ﬁ' (43)

4.1. A thermo-elastic Green’s function for the anisotropic body

The temperature discontinuity can be modelled by the thermal analog of a mechanical dislocation. The
Green’s functions for the thermo-elastic field (heat vortex) in isotropic media was addressed by Dundurs
and Comninou (1979). Sturia and Barber (1988) extended these functions to the case of an anisotropic med-
ium. But all these functions were derived for the cut along the x; axis of the (xy,x»,x3) coordinate system,
which may restrict the application of these Green’s functions. Here, in this section, a new thermo-elastic
Green’s function form for a more general case will be derived. This function is proved to be more suitable
for solving complicated fracture mechanics configurations, as the crack branching problem addressed in
this paper.
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Fig. 2. A thermo-elastic dislocation in an anisotropic medium.

A cut is assumed to be located at & = &, along the plane (& < &y, n = 0) (Fig. 2) and a constant temper-
ature discontinuity exists along this cut, i.e.

T(En=0")-T(n=0)=To &-¢&<O. (44)
A function satisfying this condition may take the form:
T - ~
T(&n) = llog({ — &) —log(T = &)), (=&+7n (45)

Therefore, the heat flux and stress fields induced by the temperature discontinuity on the plane # = 0 can be
written, respectively, as

~t k Ty

h,(£,0) = —— 46
and

~ T ~

5(8,0) = o0y, 0, 03] = 5 Im[Dlog(¢ — &), (47)
where the superscript “#” denotes the values induced by the heat vortex.

The corresponding heat flux and traction on the ¥ plane can be written, respectively, as
~ k T
Wy(r,0) = ——Re|[——— (48)
2n r—¢&/ /lw)

and

~ To. ~~ ~ ~

£y(r, ) = 2—;;Im[m~<ﬂ> (log(r — So/ 4)) + log(Aw))]- (49)

One may also obtain the heat flux and traction on the plane ¥ = n — w [i.e., x, =0 in the coordinate
system (x1, x5, x3)], respectively, as

(x)) = _FRe|—To , (50a)
| —xr = &0/ Anw)
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T ~~ ~ ~
[0, (x1), 0%y (x1), 0% (1)) " = T:EQa_U))Im[Di(n,@ (log(=x1 — &/ A(r-w)) +108 An-w))], X1 < 0. (50b)

4.2. A dislocation in an anisotropic medium

The properties of a dislocation for anisotropic media in a fixed coordinate system (xi, x5, x3) was first
investigated by Eshelby et al. (1953). In this section, we shall give the properties of a dislocation b cut along
the angle 6 = w (see Fig. 2). It should be mentioned that the components of the edge dislocation vector thus
formulated are b = [bgg, by, b39]", which are reduced to b = [b,b,,b3]" only if w = 0.

Let the cut be the same as the one in the formation of the heat vortex, i.e. it is located at & = &; on the
plane ¢ — &, <0, n = 0 in the coordinate system (&, #, x3). The displacement and stress functions can be writ-
ten in the form

u' = A((log(C, — &) + 4 {(log(, — &), (51a)
¢* = B{(log(L, — &)))ao + B((log(L, — &)))dos (51b)
where the superscript “d” denotes the values induced by the mechanical dislocation; the “7”” denotes the

values in the (&,#, x3) coordinate system.
Substituting the above equations into the conditions,

u'(n) —u'(-m) =b, $(n)— P(-n) =0, (52)

one can obtain

q():_%B b, (53)

where the identity (14) is used.
The traction on the plane # = 0 can be written as

L b
2né—¢&

In turn, the traction on the 9 plane of the (,v, x3) system with respect to the coordinate system (&, 7, x3) is

o~ 1 ~T
_213<<m>>B 1b7 (55)
where

r=4/ &+, Ry =cosV + p, sind. )

In particular, for the plane x, = 0 of the (x;,x,, x3) coordinate system, i.e. ¥ = 7w — w, we obtain

L i (L g
—X1 — éO/F/j(nﬂu)

d d d T (n—w)
[0, (x1), 0%, (x1), 05, (x1)]” = 5 ~Re
s
4.3. The thermo-elastic interaction between the crack and a dislocation

tg@v 0) = [‘7@17 Oy 0'317]T (54)

1
t:; = %Re

b, x; <0. (57)

The following useful identities can be easily verified:

-1 ~ _
j'(7‘5—(1)) = _i((u)7 :u(nfm) = _:u(wl)a (58)
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where
~ Acosw—sinw _ pcosw —sinw
hmerorore—, = (59)
cosw + Asin cos w + psin w

Then, Egs. (50) and (57) can be rewritten as

k 1
t J—
hy(x1) = o Re [xl — 50[] T, (60a)
Q -
[07,(x1), 0% (x1), agz(xl)]T =_ %Im[Dﬂ(wl) (log(xy — &) + m —log A(w))] T, (60b)

[amxl),o§2<x1>7a§2<x1>f=—Q;"n‘")lm[é« 2 ))# b

xi — Cou
3
~ ~T 2
) N Im | BIB b, (60c)
2n kzz; X1 = gd]
where
Cor = ioi(w), Soa = fo.“ (w)> 51601 = fo/lkw ) '/1’{1, = cos v +ﬁk sin v (k =1,2, 3) (61)

and [, = diag[1,0,0], I, = diag[0, 1,0], /5 = diag[0,0, 1].
Substitution of (60a) into (21) and using a contour integral technique (Muskhelishvili, 1953) yields

Yini(2) = *T*O. [ ! _~_% < (lo —a)(&y—b) 1

4mi (z—a)(z—b) (z—a)(z—b) z— o

1 n (Cor — a)(Sor — b) 1_ _Z_lz )} (62)

- ¢, C—a)z—b) z—ZCu

The subscript “int”” means interaction functions for stress, displacement and temperature distribution
fields. Integration of the above Eq. (62) gives

/ TO
Xint(z) = 74TEiB(Z7 éO[)a (63)
with

(a+b)
2

B(z, &y,) = log |:Z - ++V(z—a)(z— b)]

501_ (a+b)/2
1 z—a) or — @)\Gor — T
<0g [V( + \/ é é ) (fOt - a)(é()t - b)( é )]

l\)l'—‘

EOt —(a+b)/2
(EOt - a)(EOt - b)

+log (z—a)(z—b)+ /(& —a)(&o — ) + (z—&n)| | (64)

where a constant which plays no role in the sequel section was not considered.
Similarly, by substituting Eqgs. (60b,c) and (63) into Egs. (32) and (33), the interaction stress function
vectors can be obtained as
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i{ 2E)BIB ~Y(&,)BLB }b+ E(z) + y<z,ém>%0“@
—y(z,EO,)%EA To+ [Flz, &) + F(z,50)] 2 D, (65)
where
Y(z,f’sd)—<<W Wi_a 0. léﬁd_zlg’5d>> el (66a)
E(z) = <<1 = Z(i“a;r(j)_/i )>>B 12} D m[DA) (n — log i), (66b)
(e, tu) = <<1 el — )(é‘”_bf)(&” : b)>> log(z — &), (66c)
Pz, &) = ¥l o) — <<1 - %» log v/ (& — a) (& — ). (66d)

Therefore, the heat flux on the 8 plane due to the interaction can be calculated by substituting Eq. (62) into
(39), and it reads

hg (rAe) = 2kRe[—id() 2, (rA)]- (67)

Moreover, from Egs. (65) and (10), the following expression can be written for the traction on this plane:

in 62
7' =2 Re [Bq’)lm( 0) —

o + l)}{;m(}"7 0)1(0):| . (68)

5. Thermo-elastic crack branching in anisotropic materials

The main crack, located at the a < x; < b, x, = 0, is assumed to branch into x, > 0 (or x, < 0) at an angle
0 = w, as shown in Fig. 3. Similar to the conditions for the main crack, the boundary conditions for this
branched portion read in the coordinate system (&,#,x3) as

h2(570+) = _h(é)’ hZ(gaoi) = _h<£)7 (698.)
[Gin(éa O+)a Gﬂ'](éa O+)a 0311(53 0+)}T = —p(é),

_ _ T (69b)
[02)(£,07),04(&,07),05,(&,07)]" = —p(&).
If the applied thermo-mechanical loading at infinity is constant, then
cos2w  1sin2w 0
h(¢) = hocosw;  p(&) = | —1sin2w  cos’w 0 |pos (70)

0 0 cos @

where the vector py = 012,02, o3,]" is a constant applied traction at infinity.
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Fig. 3. A branched thermo-elastic crack in an anisotropic medium.

Now let us consider the total heat flux and traction at any point on the plane n =0, i.e., 0 = w in the
(r,0,x3) coordinate system; then superposition leads to

. ~t
h;Ot(«f, 0) = h;(l’, w) + hlé)m(rﬂ w) + hz(f, 0), (713)
t(E,0) = QF, 15 (r, ) + QL i (r, @) + 15(£,0) + £3(£,0), (71b)

where the superscripts “c” and “t/d” denote that the corresponding fields are induced by the main crack

and the heat vortex or mechanical dislocation, respectively; “int”” denotes the fields induced by the interac-
tion between the crack and the dislocation; and “tot” is the summation from all contributions.

If the branched portion of the crack is modelled by the continuous distribution of the dislocations with
density Ty(rg) = —dTo(ro)/dro and b(ro) = —db(ro)/dro, then the boundary condition ((69) and Eq. (71)) lead
to a system of singular integral equations as

k CA(r,r
ﬂ/ r(— 7”(())) Todrg +— / (r,r9)Todrg = —hg cos(w) — hy(r, w), (72)
where
1 (roA(w) — a)(roAw) — b)
A(rre) =1+ Re |1 — 73
A =1gke \/ (hior — @k ) || 7
o) — ey — b Mo
K,(r,ry) = Re Ty \/(VO o )1 — ) A o » (73b)
2 (V}u((,)) - a) (Vl(g)) - b) 7/1( ) — 7oA \/(r)v(w) — a) (r/l ) — b)
Je) — b)/2
1 (r, ) = —hoRe | Aoy [ 1 — ——2) (a * )/ (73¢)
V() — a)(riw) — b)

and

1 A
%/ }lj(r :o)bd +—/ Ky (r,ro)bdry -|——/ Kpi(r,r0)Todrg == —p(r) — Qzu>t§;(r, ) (74)
— 7y
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with

~ 3 (rout . —a)(ropt | — b) o AT
o T () () ~1T
Ay(r,r0) = =L — QT Im [E Blk<<1 = \/ a5y ) )BT BliB | (752)

k=1

: oty — oty =B\ .
Ky(r,r) = —QF Im{ B 1 - - - - !
b( 0) (w) ; << ( \/ (}"‘u(w) — a) (V,ll(w) - b) Ty — rOlu]({w) k

~T

_ < < H(w) > > B! Q(THH) BI,B
\/(”#(«;) - “)(”N(a)) —b)
roftt | —a)(rot, — b
+B :u(m) + \/( Olu(m) )( Olu(m) ) _1 :u((u) —
Pl — a)(riy,y — b (r.ll(w) - a)(”#(w) —b) Tl() = ToH)
() (@)

= :T
\BILB 3, (75b)

x B7'QT

(m—w

Kbt (}”, }”0) = —.QF(ED)RG [B [4TEE(F;‘/({,(}) ))v(u))}

1 AT -10T
B'Q[ ., ~ - BQ = ]

— Q) Im | Y(r2(0), oA () D = ¥(rkw) 1ode) =5 Dl )

; - «B'D
+ QZU)Im{B[F(r}L(,,,” I"()/{(w)) + F(}"/L(w), I"()/l(w))] 72 /l(w)}

+ QL Im[DB(r (0, "o (w)) Aw] — Im[D log(r — r0)], (75c¢)
where 1, = diag|0,1,1], I, = diag[1,0,1], I; = diag[1, 1,0].

It can be seen that the coefficients A,(r,rg) and Ax(r,ry) in Egs. (72) and (74) are functions of both r and
ro. Using the technique in Muskhelishvili (1992), these equations can be rewritten as

k[ T k [€
s _or0 dry + n A Kr(r,ro)Todro = —ho cos(w) — hy(r, ), (76a)
1 © _T bdr + 1 /CK ( )bd . 1 /CK ( )T d () oT tc( w) (76b)
— ro +=— ryr ro +=— r ro = —p(r) — r
2n ), r—ro ozanM) 02nbbt’000 14 () to\7> @),
where
1 (I”Q/l(w) - a) (FO}L(w) — b) 1
K =Rel=(1=
T(r7 rO) € |:2 ( \/ (r/l((w — a)(r;”(zu) — b) r—ry

LN \/ (roZ:w) — a)(rohiw) — Mo)  ___ He) L (77
2 (rdw) — @) (rdw) = b) | rdiw) — rodw) /(FAw) — a@)(rAw) — b)
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(o) — @) (roy,) — b) Hw)
Kp(r,70) Q) Z Im< B 11— .
(r/“l(w) - a) (r.u((u) - b) Tl — I”(),Lt<w)
— < < H(w) > > B! Q;[n_w)EIkET
\/(r/“t((u) - CZ) (r:u(w) - b)
—k
\/(r’u(“) - a) (r:u((u) - b) (r,u(w) - a) (I’/,L<w) - b) r:u(w) - r():u(w)

= =T
xB'Q[_, BB ;. (77b)

Tl (l)

The other coefficients are the same as those specified in Egs. (73) and (75).

Let

1+x)/ 141¢)l

r:( 2>, roz( 2)7 [=c—b, (78)

where |x| < 1 and [¢| < 1; then Eq. (76) can be rewritten as

k ' To c

3 [ +—/ Ko, ) Todt = —hy cos() — S (x, o), (79a)

1 ! T

7 . tbdt+— KB X, t)bdt+— Kb, x,t)Todt = —p(x) — Q(w)tg(x, o), (79b)
L x—

where KT(x, t),KB(x, t) and Kbt(x, t) are obtalned by substituting (78) in K#(r,ro), Kp(r,rg) and K/r,ro),
respectively. This system of singular equations involves two unknowns, namely 7, and b which are coupled
through the term K, in (79),. One can let (Erdogan et al., 1973)

To= (1407 (1= 0" 7@ ) = [(1+07%/(10=0"]b(0), (80)

Next is the discussion of the schemes for numerically solving the integral equations (79). The principle of
these numerical schemes can be found in Erdogan et al. (1973). One may assume that the heat vortex den-
sity at both ends of the crack branched portion is bounded, then s; can be equal to —1/2 and Eq. (79), can
be solved by Gauss—Chebvshev integration. The numerical version of (79); can be expressed as

il_’?m) ! — Kr(ti,x) —3[;; cos w + K5(x, )], ;= cos i (i=1,...,n)
i:1n+1 i i —x; T\tiy Ak _k 0 0\Mey ) i — i’l+1 — Lyt

xk:cos<§2nk+11> (k=1,....n+1). (81)

Eq. (81) is satisfied for n + 1 values of 71(¢,), but only n unknowns of 7(t;) are needed in (81). Therefore,
one of these 7(t;) should be omitted (Erdogan et al., 1973). In order to ensure that the singularity at the
intersection point of the main crack and the branched crack should be less than that of the branched crack
tip, the T (—1) was set to zero. Then Eq. (81) can be solved uniquely.

Once the solution for T} is obtained, one can move to solve (79),. As specified in the literature by some
authors such as by Keer and Miller (1982), the singularity at the intersection point of the main crack and
the branched crack should be of order no larger than 1/2. This assertion can also be obtained by a proce-
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dure similar to the one in deriving Egs. (83) in this paper. Therefore, one then may set s, = 1/2 and (79),
can be rewritten in numerical form as

i 11’(’5) [ L — Ky(ti,xc)

1 — Xg

> Zhe) =

. 1 .
=2 [p(xk) + Q”(rw)t;(xk, CU) —+ % /1 Kbt(xk, t)TO dl:| R

(82)
2i—1
t; = cos (n 12n ), (i=1,...n);
k
xk:cos(n—> i=1,...,n=1),
n
where the second equation i.e. (82), comes from the condition f t)dt = 0, which satisfies the condition

of single-valuedness of displacement around the crack. The 1ntegrat10n of the third term on the right hand
side of (82); was performed by using Simpson’s rule. Since the nodes used in (81) and (82) are different, the
polynomial interpolations were also used to obtain the values of K, (x,#) and Ty(¢) from the nodes in (81)
for those values needed for the nodes in (82);.

The stress intensity factors at the branched crack tip can be numerically calculated by employing the
technique given by Muskhelishvili (1953)

1 "M
K = [KH,KI,KHI] = lim 2n(r— l)— MW(I) dr
r—It T J 1 t—x
(1 +1¢) nl~
= Jim v2r(r=1) / {—x) 1—11/2d \/2”’(1) (83)

where (78) was used. Moreover, the energy release rate of the crack branch can be computed by using the
following expression as pointed out in (Barnett and Asaro, 1972)

G= %KT ReidB ] K, (84)
in which,

1B ' =1 —isL . (85)
Therefore,

G(w) = %KTZ’IK, (86)

where L = Q"(0)LQ(w), and Q(w) is defined in (43).

6. Numerical results and discussion

In this section, we shall investigate the influence of thermal conductivity on the crack branching in com-
posite materials. The thermo-elastic properties are chosen for a general orthotropic materials as vi» = — S,/
S11=10.25; S¢¢ = 2(S11 — S12) kll =42, IW/ITI/K k22 = k33, o011 =0.025x 10~ m/m/K 0y = 033 = 32.4 X
10~°m/m/K, where v,, is the Poisson’s ratio and sy (1,7 =1,2,3) are material compliance coefficients. The
degree of anisotropy is defined as S1;/S,,. The unit heat flux 4, or/and pure unit tension o, were the spec-
ified applied loading in the numerical calculations.
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Fig. 4. Stress intensity factors vs. L// for a branching angle w = 15° (unit tension applied loading).
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Fig. 5. Stress intensity factors vs. branching angles for the isotropic case (unit tension applied loading).

The results for the special case of nearly isotropic medium are plotted in Figs. 4 and 5, in which the ap-
plied loading is pure unit tension a5,. The number of nodes, n = 120, was used in all the computations. In
Fig. 4, we plot the Modes I and II stress intensity factors with respect to the ratio L/l (where “I”’ denotes the
length of the branched portion of the crack and “L” the half-length of the main crack), under the assumed
branching angle w = 15°. This plot shows that the results converge when the ratio L/l > 50. The onset of a
crack branching usually is of primary interest. Therefore, the “infinitesimal’ crack branch is assumed to be
I[/L =0.001 in the sequel computation. Fig. 5 presents the variation of Modes I and II stress intensity fac-
tors of the branched crack tip vs. the branching angles. The results by Lo (1978) for an isotropic medium
with same geometric and loading conditions are also plotted in Figs. 4 and 5. It can be seen that these two
sets of results are remarkably closed to each other, especially for the infinitesimal branched crack tip. This
would verify that the assumption s, = 1/2 in Section 5 is reasonable and the method in the present paper
may be suitable in dealing with crack branching problems.

Figs. 6 and 7 show, respectively, the stress intensity factors and energy release rate for a nearly isotropic
material, i.e. S»» = 1.01S;; in Figs. 8 and 9 are the stress intensity factors and energy release rate for an
anisotropic material, the degree of anisotropy is S»» = 2.50S;;. In these cases the ratio k»»/k;; of the heat
conduction coefficients is assumed to be 0.01. From the results in Figs. 6 and 7, it can be seen that the
branching angle at which the K attains its maximum value (Kj; reaching its minimum value) coincide with
the angle which makes the energy release rate attain its maximum value; while those angles in Figs. 8 and 9
are different. This observation shows that the K-based criteria are still valid for the thermo-elastic problem
of isotropic materials. But for the thermo-elastic problem of anisotropic media, the G-based criteria should
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Fig. 6. Stress intensity factors vs. branching angles for a nearly isotropic material.
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Fig. 7. Energy release rate vs. branching angles for a nearly isotropic material.
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Fig. 8. Stress intensity factors vs. branching angles for an anisotropic material.
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be used. It can also be seen that the curves Ky and Kjpp in Figs. 6 and 8 have two local maxima in absolute
value. This makes the curves uneven. If no thermal loading applied, the Kj; and Kjj; curves for general
anisotropic medium usually have two local maximum values of opposite sign and symmetrically distributed
as shown in the literature (e.g. Obata et al., 1989). But the thermal loading shifts and mixes these two locals,
thus the curves look uneven. The unevenness of energy release rate curves follows that of Ky and K.
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Fig. 9. Energy release rate vs. branching angles for an anisotropic material.

Notice that a non-zero Kjyj exists in Figs. 6 and 8, although the material is orthotropic and the only ap-
plied load is the g,,; also the K approaches small negative values (i.e. suggesting that the surfaces around
the crack tip are not open) when the branching angles approach to zero. These two interesting phenomena
are due to the thermal loading effects. As we know, when the branching angles w = 0, this problem degen-
erates to a straight crack of anisotropic medium under thermo-mechanically loading, in which the contact
phenomena (negative Kj) may happen under some combined loading as pointed out by some authors such
as Sturia and Barber (1988). If this overlapping needs further study, the contact model may be an alterna-
tive approach. But it can be seen that the above observation may further confirm that the current method is
a good approximation for investigating thermo-elastic crack branching problems.

The influence of the degree of anisotropy is also illustrated in these cases. In particular, when
Sy = 1.01S};, the Gpa/Go is 1.875 with a corresponding branching angle mp,., = 22.5° (see Fig. 7); while
when Sy, = 2.58, the Guax/Go = 2.925 with a corresponding branching angle wy,x = 27.25° (see Fig. 9).
Here, Gy is the value without branching.

Presented in Fig. 10 is the combined influence of thermal conduction properties and the degree of anisot-
ropy on the branching angles. It can be observed that the branching angles increase as the degree of anisot-
ropy (S»/Si1) increases when 0.01 < ky»/ky; < 0.275; while this result is reversed when 0.275 < ky»/
ki1 < 0.425. But when 0.425 < ksy/k;; < 0.5, the tendency is mixed. Such plots can provide a guideline
for the selecting the thermal properties of anisotropic materials.
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." -
404 1 S S
30_‘[’ : 522/311=§.5 =
\/
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Fig. 10. Maximum branching angles vs. ratio of heat conduction coefficients.
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7. Conclusion

Thermo-elastic crack branching of anisotropic material was investigated and the influences of thermal
properties and the degree of anisotropy on the onset of crack branching was addressed. A closed form solu-
tion to the interaction between the heat dislocation and a crack was also presented. The following conclu-
sions can be drawn from the results obtained this paper: (1) A G-based criterion seems more reasonable
than a K-based in predicting the onset of branching in the thermo-elastic problem. (2) A Ky exists for
the orthotropic material under normal loading g5, due to thermal effects. (3) Negative Ky (overlapping
of the crack faces around the crack tip) is possible under certain mechanical loading due to the thermal
effects. (4) The coefficients of heat conduction and the degree of anisotropy of the composite material have
strong combined effects on the crack branching.

Acknowledgments

The financial support of the Office of Naval Research, Grant N00014-03-1-0189, and the interest and
encouragement of the Grant Monitors, Dr. Patrick C. Potter and Dr. Luise Couchman is gratefully
acknowledged.

References

Atkinsion, C., Clements, D.L., 1972. One some crack problems in anisotropic thermoelasticity. Int. J. Solids Struct. 13, 855-864.

Atkinsion, C., Clements, D.L., 1983. A thermoelastic problem for a crack between dissimilar anisotropic media. Int. J. Solids Struct.
19, 121-130.

Barnett, D.M., Asaro, R.J., 1972. The fracture mechanics of slit-like cracks in Anisotropic elastic media. Journal of the Mechanics and
Physics of Solids 20, 356-366.

Chao, C.K., Shen, M.H., 1993. Thermoelastic problem of curvilinear cracks in the bonded dissimilar materials. Int. J. Solids Struct. 30
(22), 3041-3057.

Dundurs, J., Comninou, M., 1979. Green’s functions for planar thermoelastic contact problems—exterior contact. Mech. Res. Comm.
6 (5), 309-316.

Erdogan, F., Gupta, G.D., Cook, T.S., 1973. Numerical solution of singular integral equation. In: Sih, G.C. (Ed.), Mech. Fracture 1,
368-425.

Eshelby, J.D., Read, W.T., Shockley, W., 1953. Anisotropic elasticity with application to dislocation. Theory. Acta Metall. 2, 251-259.

Florence, A.L., Goodier, J.N., 1963. The linear thermoelastic problem of uniform heat flow disturbed by a penny-shaped insulated
crack. Int. J. Eng. Sci. 1, 533-540.

Hasebe, N., Tamai, K., Nakamura, T., 1986. Analysis of kinked crack under uniform heat flow. J. Eng. Mech. 112 (1), 31-42.

Herrmann, K.P., Loboda, V.V., 2001. Contact zone models for an interface crack in a thermomechanically loaded anisotropic
bimaterials. J. Thermal Stress 24, 479-506.

Hwu, C., 1990. Thermal stresses in an anisotropic plate disturbed by an insulated elliptic hole or crack. ASME J. Appl. Mech. 57 (4),
916-922.

Keer, L.M., Miller, G.R., 1982. Approximate analysis model of anchor pull-out test. ASME J. Appl. Mech. 49, 768-772.

Li, R., Kardomateas, G.A., 2001. On delamination branching of anisotropic bimaterials. In: Waas, A.M., Whitcomb, J.D. (Eds.),
Proceedings of 2001 ASME International Mechanical Engineering Congress & Exposition, Nov. 11-16, 2001, New York, NY, AD-
Vol. 66, 111-120.

Lo, K.K., 1978. Analysis of branched crack. Journal of Applied Mechanics (ASME) 45, 797-802.

Muskhelishvili, N.I., 1953. Some Basic Problems of the Mathematical Theory of Elasticity (1933) (English Translation). P. Noordoff
and Company, New York.

Muskhelishvili, N.I., 1992. Singular Integral Equations. Dover Publications, New York.

Obata, M., Nemat-Nasser, S., Goto, Y., 1989. Branched cracks in anisotropic elastic solids. Journal of Applied Mechanics (ASME) 56,
858-864.

Rudin, W, 1987. Real and Complex Analysis. McGraw-Hill, New York.

Stroh, A.N., 1958. Dislocations and cracks in anisotropic elasticity. Phil. Mag. 8 (3), 625-646.

Sturia, F.A., Barber, J.R., 1988. Thermal stresses due to a plane crack in general anisotropic material. ASME J. Appl. Mech. 55, 372-376.



	Thermo-elastic crack branching in general anisotropic media
	Introduction
	Basic thermo-anisotropic elasticity formulas
	The general solution to the thermo-elastic crack in an anisotropic material
	The thermo-elastic interaction between the crack and a dislocation in an anisotropic medium
	A thermo-elastic Green rsquo s function for the anisotropic body
	A dislocation in an anisotropic medium
	The thermo-elastic interaction between the crack and a dislocation

	Thermo-elastic crack branching in anisotropic materials
	Numerical results and discussion
	Conclusion
	Acknowledgments
	References


