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Abstract

On the basis of the two-dimensional theory of anisotropic thermoelasticity, a solution is given for the thermal stress
intensity factors due to the obstruction of a uniform heat flux by an insulated line crack in a generally anisotropic half
plane. The crack is replaced by continuous distributions of sources of temperature discontinuity and dislocations. First,
the particular thermoelastic dislocation solutions for the half plane are obtained; then the corresponding isothermal
solutions are superposed to satisfy the traction-free conditions on the crack surfaces. The dislocation solutions are
applied to calculate the thermal stress intensity factors, which are validated by the exact solutions. The effects of the
uniform heat flux, the ply angle and the crack length are investigated.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite materials are often subjected to the combined action of a mechanical loading and a thermal
loading, for example in instances of fire. Defects that are unavoidable and characteristic for many struc-
tures decrease their strength and life. The accurate stress intensity-factor evaluation is essential in the pre-
diction of failure and the calculation of crack growth rate in these structures. A number of plane
thermoelastic boundary-value problems have been solved for a generally anisotropic material using the
Fourier integral transform technique. For example, using the basic equations derived by Clements
(1973) for anisotropic thermoelasticity, Clements and Toy (1976) considered two thermoelastic contact
problems; Following their work, Atkinson and Clements (1997) gave a solution of the two-dimensional
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Griffith crack obstructing a uniform heat flux. Using the techniques of Fourier transforms and multiple
integrations, Tsai (1983, 1984) studied the crack embedded in a transversely isotropic or orthotropic mate-
rial. However, we note that it is not easy for the Fourier transform method to give explicit expressions for
the stresses and displacements. It also requires to pay very careful attention to the way the representation
behaves at infinity to avoid possible divergent integrals. Sturla and Barber (1988a,b) reconsidered the two-
dimensional Griffith crack problem in an infinite medium by the Green function formulation and expressed
the thermal stress distribution and stress intensity factors in terms of physical variables. They gave the exact
solution for the crack problem in an infinite medium. But, again, it is not an easy task to derive the Green�s
function for more complex boundary-value problems such as the half plane (considered here), the strip or
bi-material configurations with complicated heat flux or temperature field distribution.

A alternative and very effective method to study crack problems, which has been extensively used in iso-
thermal anisotropic problems is the continuous dislocation technique. Eshelby et al. (1953) and Stroh
(1958) presented analytical solutions for a single dislocation in a generally anisotropic medium. Following
their work, Ting (1986), Atkinson and Eftaxiopoulos (1991), Civelek and Erdogan (1982), Suo (1990), Suo
and Hutchinson (1990) and Huang and Kardomateas (2001) considered various isothermal crack problems
involving anisotropic infinite plane, half plane, strip and bi-material problems. Sekine (1977) used contin-
uous distributions of sources of temperature discontinuity and edge dislocations to model the insulated line
crack along an arbitrary direction under uniform heat flux, in order to solve the thermoelastic problem in
an isotropic half plane. To the author�s knowledge, however very little work have been done for generally
anisotropic thermoelastic problems using the technique (and none for the anisotropic half plane which is
considered herewith).

In this paper, we used the basic formulations derived by Clements (1973) and Sturla and Barber (1988b)
plus appropriate image systems to get zero heat flow along a free boundary. The particular thermoelastic
solution is superposed with the corresponding isothermal solution in order to get zero traction along the
free boundary. The analytic solution for a single dislocation is presented firstly, then the crack is replaced
by a distribution of such dislocations and a system of singular integral equations is formulated. To solve the
system, we use the inversion theorem for Cauchy integral equations and turn them to a set of Fredholm
integral equations of the second kind, which is solved by a standard numerical method. Having obtained
the dislocation densities, we can appropriately obtain the mixed-mode thermal stress intensity factors.
Some results of practical interest are presented.
2. Formulation

Let x1, x2, x3 denote Cartesian coordinates and consider a homogeneous generally anisotropic half plane
with a crack parallel to the free boundary x2 = 0 under a uniform heat flow, as shown in Fig. 1. The crack is
assumed to be fully open, hence be traction-free and to prevent the transfer of heat between its faces. The
corresponding boundary conditions are:
q2 ¼ 0; �a < x1 < þa; x2 ¼ x20; ð2:1Þ

ri2 ¼ 0; �a < x1 < þa; x2 ¼ x20; ð2:2Þ

q2 ¼ q0; �1 < x1 < þ1; x2 ¼ 0; ð2:3Þ

ri2 ¼ 0; �1 < x1 < þ1; x2 ¼ 0; ð2:4Þ

q2 ¼ q0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
! 1; ð2:5Þ



Fig. 1. The thermoelastic fully-open crack in half plane.
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rij ¼ 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
! 1: ð2:6Þ
The configuration can be decomposed into two parts (Fig. 1); the first is the configuration without the
crack under uniform heat flow, which involves no thermal stress; the second is the corrective configuration,
for which the boundary conditions are:
q2 ¼ �q0; �a < x1 < þa; x2 ¼ x20; ð2:7Þ

ri2 ¼ 0; �a < x1 < þa; x2 ¼ x20; ð2:8Þ

q2 ¼ 0; �1 < x1 < þ1; x2 ¼ 0; ð2:9Þ

ri2 ¼ 0; �1 < x1 < þ1; x2 ¼ 0; ð2:10Þ

q2 ¼ 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
! 1; ð2:11Þ

rij ¼ 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
! 1: ð2:12Þ
2.1. A single dislocation in a half plane

2.1.1. The temperature field for a single dislocation in a half plane

We present here the solution for a single dislocation in a half plane configuration. A dislocation, with the
temperature discontinuity strength and Burgers vector bi emerges at the point (x10,x20), which is shown in
Fig. 2.

The relation between the heat flux, qi, and the temperature, T, is given by:
qi ¼ �kij
oT
oxj

; ð2:1:1Þ
where i, j = 1,2,3, and kij are the thermal conductivity constants and kij = kji.



Fig. 2. A dislocation near the free boundary.
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The temperature must satisfy the heat conduction equation:
kij
o2T

oxi oxj
¼ 0; ð2:1:2Þ
and this is satisfied by:
T ðx1; x2Þ ¼ f ðx1 þ sx2Þ þ �f ðx1 þ �sx2Þ; ð2:1:3Þ

where s is the heat eigenvalue and it is the root with positive imaginary part of the equation:
k11 þ 2k12s þ k22s2 ¼ 0: ð2:1:4Þ

Then, the temperature field can be written as:
T ðx1; x2Þ ¼ f ðztÞ þ �f ð�ztÞ; ð2:1:5Þ

where zt = x1 + sx2 and f(zt) is any analytical function of zt.

If /(zt) is any function of x1 and x2, the heat flux in the form:
q1 ¼ � o/
ox2

; q2 ¼
o/
ox1

; ð2:1:6Þ
satisfy Eq. (2.1.2) identically. Eqs. (2.1.3), (2.1.5) and (2.1.6) give:
/ðx1; x2Þ ¼ ltf ðztÞ þ �lt�f ð�ztÞ; ð2:1:7Þ

thus
q1 ¼ �ltsf 0ðztÞ � �lt�s�f
0ð�ztÞ; ð2:1:8aÞ
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q2 ¼ ltf 0ðztÞ þ �lt�f
0ð�ztÞ; ð2:1:8bÞ
where
lt ¼ �k12 � sk22: ð2:1:9Þ

Let us introduce a constant mt, defined by:
ltmt ¼ 1: ð2:1:10Þ

All of the above, concerned with an infinite plane configuration, can also be implemented in the case of a

medium with a heat flux free boundary, but we shall have to choose the function f(zt) such that:
q2ðx1; 0Þ ¼ 0: ð2:1:11Þ
For this purpose, a function is chosen first for the temperature field due to a single dislocation in an infinite
medium:
vðztÞ ¼
1

4p
mtdt logðzt � ntÞ; ð2:1:12Þ
where
nt ¼ x10 þ sx20; ð2:1:13Þ

t ¼ Btdt; ð2:1:14Þ

Bt ¼
i

2
ðmt � �mtÞ; ð2:1:15Þ
where t represents the temperature discontinuity strength.
It can be proved that dt is real, as follows. From Eqs. (2.1.12) and (2.1.7), we obtain:
/ðx1; x2Þ ¼ lt
1

4p
mtdt logðzt � ntÞ þ �lt

1

4p
�mt
�dt logðzt � ntÞ ¼

1

4p
dt logðzt � ntÞ þ

1

4p
�dt logðzt � ntÞ:
The change in / along a closed path about the point nt is:
D/ ¼ 2pi
1

4p
dt �

1

4p
�dt

� �
¼ i

2
ðdt � �dtÞ:
This change in / represents the next heat source at that point nt. In order to have a pure temperature dis-
continuity without a net heat source, it is clear that D/ = 0, therefore dt is real.

Furthermore, since Bt is also real, it is clear from Eq. (2.1.14) that t is real as well.
Now, another function, w(zt), has to be found to ensure the free heat flux boundary condition at the axis

x2 = 0, so that when added to v(zt), then
f ðztÞ ¼ vðztÞ þ wðztÞ: ð2:1:16Þ

Therefore, we require:
1

4p
ltmtdt

1

x1 � nt
þ �lt�w0

tðx1Þ ¼ 0 ð2:1:17Þ
or,
w0ðx1Þ ¼ � 1

4p
mtdt

1

x1 � �nt

: ð2:1:18Þ
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Finally, we obtain:
wðztÞ ¼ � 1

4p
mtdt logðzt � �ntÞ; ð2:1:19Þ
then
f ðztÞ ¼
1

4p
mtdt logðzt � ntÞ �

1

4p
mtdt logðzt � �ntÞ: ð2:1:20Þ
The first part of Eq. (2.1.20) represents the temperature distribution due to a single dislocation in an infi-
nite plane, the second part represents the boundary influence on the temperature field, it also can be seen as
an appropriate image dislocation located at the point �ntðx10;�x20Þ in the infinite plane. Due to the symmet-
ric distribution of the two dislocations, the heat flux at the symmetry axis x2 = 0 equals to zero.

2.1.2. The stress field for a single dislocation in a half plane
A particular thermoelastic solution for a single dislocation at the position n(x10,x20) in an infinite plane

can be written as (Sturla and Barber, 1988a,b)
ri2 ¼ Qi

1

4p
mtdt log jzt � ntj

� �
þ CC; ð2:1:21Þ
where CC denotes the complex conjugate and Qi is defined by the material constants. Also, i = 1,2,3 and
the variables with subscript t refer to the scalars associated with the temperature field. For the infinite plane
configuration, the traction due to the single dislocation at n(x10,x20) is given by Eq. (2.1.21). As for the
influence of the free heat flux boundary, the traction due to the image dislocation at the symmetric position
�ntðx10;�x20Þ is given by Eq. (2.1.21) as well. Finally, we obtain the particular thermoelastic solution in the
half plane configuration
ri2 ¼ Qi
1

4p
mtdtðlog jzt � ntj � log jzt � �ntjÞ

� �
þ CC: ð2:1:22Þ
For the half plane configuration, the traction free boundary condition
ri2ðx1; 0Þ ¼ 0; ð2:1:23Þ
should be satisfied as well, so an isothermal solution should be superposed to ensure the traction free
boundary condition.

To solve the problem, we make use of the basic formulations from Stroh (1958), in which the displace-
ment is written as (in the following equations, i,k,a = 1,2,3):
uk ¼
X

a

AkauaðzaÞ þ
X

a

Aka�uað�zaÞ; ð2:1:24Þ
where
za ¼ x1 þ pax2; ð2:1:25Þ

and the pa are the three roots with positive imaginary part of the equation
ci1k1 þ paðci1k2 þ ci2k1Þ þ p2aci2k2
�� �� ¼ 0; ð2:1:26Þ
cijkl are the elastic constants and the stress components rij are defined in terms of the function:
Xi ¼
X

a

LiauaðzaÞ þ
X

a

Lia�uað�zaÞ; ð2:1:27Þ
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where
Lia ¼ ðci2k1 þ paci2k2ÞAka: ð2:1:28Þ

In particular, we have
ri2 ¼
X

a

Liau
0
aðzaÞ þ

X
a

Lia�u
0
að�zaÞ; ð2:1:29Þ
so, we require:
X
a

Liau
0
aðx1Þ þ

X
a

Lia�u
0
aðx1Þ þ

1

4p
Qimtdt½logðx1 � ntÞ � logðx1 � �ntÞ�

þ 1

4p
Qi �mtdt½logðx1 � �ntÞ � logðx1 � ntÞ� ¼ 0: ð2:1:30Þ
This results in:
Lia�u
0
aðx1Þ þ

1

4p
Qi½mtdt logðx1 � ntÞ� �

1

4p
Qi½�mtdt logðx1 � ntÞ� ¼ 0: ð2:1:31Þ
Finally, we obtain:
u0
aðzaÞ ¼

1

4p
MaiðQimtdt � Qi �mtdtÞ logðza � �ntÞ: ð2:1:32Þ
In the latter equation, the relationship between Lai and Mai is (for detailed explanation, refer to Stroh,
1958):
MaiLib ¼ dab:
So, the required particular thermoelastic solution now can be obtained by superposing the particular solu-
tion of Eq. (2.1.22) and the general isothermal solution of Eqs. (2.1.29) and (2.1.32). In particular, we find
the stress ri2 is given by:
ri2 ¼ 2Re
1

4p
Qimtdt

�
logðzt � ntÞ � logðzt � �ntÞ

�
þ 1

4p
Lia

�
MakðQkmtdt � Qk �mtdtÞ logðza � �ntÞ

�	 

;

ð2:1:33Þ

where Re means the real part of the complex function.
2.2. A fully-open crack in an anisotropic half plane as a series of dislocations

Consider a fully open crack of length 2a parallel to the free boundary under uniform heat flux in an
anisotropic half plane (configuration shown in Fig. 1). The temperature, T, and heat flux, qi, distribution
with a single dislocation for a half plane configuration can be determined by Eqs. (2.1.5), (2.1.8) and
(2.1.20).

Now, the crack is replaced by a series of dislocations with the temperature discontinuity strength t at
each dislocation point. Then, we have:
q2ðx1; x20Þ ¼
Z þa

�a
~q2ðx1; x20; s; x20Þtðs; x20Þds ¼ �q0ðx1; x20Þ; ð2:2:1Þ
where ~q2ðx1; x20; s; x20Þ represents the heat flux at the point (x1,x20) due to the dislocation with unit temper-
ature discontinuity strength at the point (s,x20), so it can be determined by Eqs. (2.1.8b) and (2.1.20) by
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setting t = 1. In order to satisfy the boundary condition Eq. (2.7), Eq. (2.2.1) should equal to the opposite
of the external heat flux q0.

Eq. (2.2.1) is a singular integral equation with the typical Cauchy kernel; it can be transformed into
N � 1 linear algebraic equations by the case I Gaussian formulas following Hills et al. (1996)
pa ~q2ðx1;k; x20; sm; x20ÞW m~tð~sm; x20Þ ¼ �q0ðx1;k; x20Þ; ð2:2:2Þ
where k = 1,2, . . .,N � 1; m = 1,2, . . .,N and N is the number of integration points. Also, sm are integration
points, x1,k are collocation points and Wi are the weight functions appropriate to the quadrature formula
employed; they are given by:
sm ¼ a~sm; x1;k ¼ a~tk; ~tð~sm; x20Þ ¼
tð~sm; x20Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2m

q ; ð2:2:3Þ

~sm ¼ cos
pð2m� 1Þ

2N

� �
; ~tk ¼ cos p

k
N

� �� �
; W m ¼ 1

N
: ð2:2:4Þ
The temperature continuity outside the crack can be imposed by enforcing the auxiliary condition:
XN
m¼1

W m~tð~sm; x20Þ ¼ 0: ð2:2:5Þ
Following Eqs. (2.2.2) and (2.2.5), the temperature discontinuity strength ~t at each integration point
ð~sm; x20Þ can be determined.

The particular thermoelastic traction along the crack surfaces is associated with the temperature discon-
tinuity strength at each integration point, which can be written as:
r p
ijðx1; x2Þ ¼

Z þa

�a
~r p
ijðx1; x2; s; x20Þds; ij ¼ 21; 22; 23; ð2:2:6Þ
where ~rijðx1; x2; s; x20Þ represents the particular thermoelastic stress at the point (x1,x2) due to the temper-
ature discontinuity strength at the point (s,x20). If t(s) is given, we can solve Eq. (2.2.6) by the standard
numerical method. It has a Generalized Cauchy kernel, i.e. rp

ijðx1; x20; s; x20Þ becomes unbounded as both
the integration and collocation variables, s and x1, tend to the same end-point. Since the temperature dis-
continuity strength function t(s) is singular at each end-point, we can reduce Eq. (2.2.6) to a system of alge-
braic equations (Hills et al., 1996):
rp
ijðx1;k; x20Þ ¼

XN
m¼1

~rp
ijðx1;k; x20; sm; x20Þ; ð2:2:7Þ
where ~rp
ijðx1;k; x20; sm; x20Þ represents the stress at collocation point (x1,k,x20) due to the temperature discon-

tinuity strength at the integration point (sm,x20). So Eq. (2.2.7) can be evaluated from Eq. (2.1.33) by substi-
tuting the temperature discontinuity strength at the N integration points.

To satisfy the traction-free boundary condition at the crack surfaces, we superpose a solution of the cor-
responding isothermal problem with traction equal and opposite to those of Eq. (2.2.7). This solution is
conveniently represented by a distribution of dislocations of strength bi(s). The solution with a single dis-
location bi(s) for an anisotropic half plane is given (Atkinson and Eftaxiopoulos, 1991). In particular, the
stress ri2 being:
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ri2 ¼
X

a

Liaf 0
aðzaÞ þ

X
a

Lia
�f
0
að�zaÞ; ð2:2:8Þ
where
f ðzaÞ ¼
1

4p
Majdj logðza � naÞ �

1

4p

X
c

MakLkcM cjdj logðza � �ncÞ; ð2:2:9Þ

bi ¼ Bijdj; ð2:2:10Þ

Bij ¼
i

2
ðAiaMaj � AiaMajÞ: ð2:2:11Þ
Thus, the crack can be modeled as a series of dislocations with the densities bi(s,x20). The corresponding
tractions along the crack surfaces due to the dislocation series are:
rg
ijðx1; x20Þ ¼

Z þa

�a

eF ijðx1; x20; s; x20Þbiðs; x20Þds; ij ¼ 21; 22; 23; ð2:2:12Þ
which should equal to the particular thermoelastic solution along the crack surfaces. In the previous expres-
sion, eFðx1; x20; s; x20Þ represents the stress at the point (x1,x20) due to the unit dislocation density b(s,x20), it
can be obtained by Eq. (2.2.8) and (2.2.9) by setting b = {1,0,0}, b = {0,1,0} and b = {0,0,1} respectively.
We use the case I Gaussian formulas (Hills et al., 1996) to solve Eq. (2.2.12), which can be transformed to
3(N � 1) linear algebraic equations:
paeF ijðx1;k; x20; sm; x20ÞhhW m;W m;W mii~bið~sm; x20Þ ¼ �rp
ijðx1;k; x20Þ; ð2:2:13Þ
where x1,k, sm, Wm are given by Eqs. (2.2.3) and (2.2.4) and:
~bð~sm; x20Þ ¼
bð~sm; x20Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~s2m

q : ð2:2:14Þ
In addition, it is also necessary to impose the closure condition, therefore three additional equations are
obtained:
XN
m¼1

W m
~blð~sm; x20Þ ¼ 0; l ¼ 1; 2; 3: ð2:2:15Þ
Eqs. (2.2.13) and (2.2.15) enable us to calculate the dislocation densities ~bð~sm; x20Þ at the N integration
points. The crack tip dislocation density can be extrapolated from the N integration points as (Hills
et al., 1996):
~blð1Þ ¼ ME

XN
m¼1

bEðþ1Þ~blð~smÞ; ð2:2:16Þ

~blð�1Þ ¼ ME

XN
m¼1

bEð�1Þ~blð~sNþ1�mÞ; ð2:2:17Þ
where
bEðþ1Þ ¼ sin
2m� 1

4N
pð2N � 1Þ

� �

sin

2m� 1

4N
p

� �
; bEð�1Þ ¼ bEðþ1Þ; ME ¼ 1

N
: ð2:2:18Þ
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The stress intensity factors at the crack tip can be calculated as (Huang and Kardomateas, 2001):
Table
Materi

E11 = 1
G12 =
m12 = 0
a11 = 0
K11 =

11 is th
Kiðþ1Þ ¼
ffiffiffiffiffiffi
pa

p

2
Re LiaMajB�1

jc
~bcðþ1Þ

h i
; ð2:2:19Þ

Kið�1Þ ¼ �
ffiffiffiffiffiffi
pa

p

2
Re LiaMajB�1

jc
~bcð�1Þ

h i
; ð2:2:20Þ
where Re[Æ] stands for the real part of a complex variable and ~bcð�1Þ are solved from Eqs. (2.2.16) and
(2.2.17).
3. Results and discussion

First, to validate the method, we choose the traction free boundary infinite; under this condition, the half
plane solution should reduce to the solution for infinite plane. In this manner, it is easy to verify the solu-
tion because the analytical solution for the thermal stress intensity factors is known (Sturla and Barber,
1988b). The elastic material constants were taken from Kim et al. (2002) and listed in Table 1; x1 is the
laminate�s longitudinal direction; x2 is the normal direction (thicknesswise) of the lamina and the x3 direc-
tion is determined by right-hand rule. The fiber orientation h� is defined as the angle of the fibers with the
x1.

First, the convergence for the numerical integration is checked and the results are listed in Table 2. A 0�
lamina is used in the calculation. The free boundary is located at x20 = 5 and the length of the crack a = 1.
Obviously, as the number of integration points increases, the results of the thermal stress intensity factors
converge well. In Fig. 3, we also show the convergence of the results with the number of integration points.
In this figure, and all of the following figures, the SIFs are normalized with the Mode II stress intensity
factor for an infinite plane and a zero deg. material, KII0, with a heat flux loading of q = 1.0 W/mK and
a crack length a = 1.0 mm.

In order to validate the method, we set the free boundary at infinity. Thus, the half plane solution re-
duces to the solution of an infinite plane. In this manner, it is easy to verify the solution because the ana-
lytical solution for the thermal stress intensity factors in an infinite plane is known Sturla and Barber
(1988a,b). Table 3 gives the comparison of the present solution for the limiting case of an infinite plane.
The material is chosen to be 0�, 45� and 90� respectively. We assume the free boundary located at
x20 = 1.0 · 109 (a very large distance in order to simulate infinity). The dislocation results from this limiting
case of the half plane compare well with the analytical solutions of the infinite plane. The agreement verifies
the numerical method.

Next, we study the influence of the external heat flux to the mixed-mode thermal stress intensity factors.
Figs. 4a, b and c give the Mode II, I and III SIFs for cracks in a half plane with different material choices as
a function of the external heat flux. The crack is located at x20 = �10 and the length of the crack is a = 1.
Fig. 4d and e give the Mode-II and Mode-III mode mixity. The mode mixities, w, are defined as:
1
al properties for graphite/epoxy laminate

44.23 GPa, E22 = 9.65 GPa, E33 = 9.65 GPa
4.14 GPa, G13 = 4.14 GPa, G23 = 3.45 GPa
.301, m13 = 0.301, m23 = 0.49
.88 lm/mK, a22 = 31.0 lm/mK, a33 = 31.0 lm/mK
4.48 W/mK, K22 = 3.21 W/mK, K33 = 3.21 W/mK

e longitudinal direction (fiber direction), 33 the transverse, and 22 the normal direction.



Table 2
Convergence of SIFs for a crack in a homogeneous anisotropic half plane

Number of integration points, N

10 50 100 150 200 250 300

KII 4.86e�001 5.46e�001 5.51e�001 5.53e�001 5.53e�001 5.53e�001 5.53e�001
KI 3.02e�002 3.21e�002 3.21e�002 3.21e�002 3.21e�002 3.21e�002 3.21e�002

Material: 0�; x20 = 10 mm; a = 1 mm; q0 = 1 W/mK; data are in m1/2Pa.

Fig. 3. The convergence of the mixed-mode stress intensity factors for 0� material.

Table 3
Comparison of the numerical method with the analytical results for the limit of infinite plane

The numerical method The analytical method (Sturla and Barber,
1988a, 1988b)

KII KI KIII KII KI KIII

0� 0.551 3.23e�010 5.68e�015 0.5548 0 0
45� 0.364 6.26e�011 0.0849 0.36614 0 0.085459
90� 0.28018 �5.84e�016 2.35e�012 0.28018 0 0

To simulate an infinite plane, x20 was set very large, x20 = 1010 mm; a = 1 mm; q0 = 1 W/mK; N (number of integration points) = 100.
Data are in m1/2Pa.

5218 L. Liu, G.A. Kardomateas / International Journal of Solids and Structures 42 (2005) 5208–5223
wII ¼ arctan
KII

KI

� �
; wIII ¼ arctan

KIII

KI

� �
: ð3:1Þ
It can be seen from Fig. 4a–c that the mixed-mode SIFs increase linearly with the external heat flux q0;
the ply angle of the lamina influences the rate of increase. For the Mode-II SIF, the 0� material gives the
highest rate of increase, the 90� gives the lowest rate of increase and the 45� material is between; For the
Mode-I SIF, the 0� material gives the highest rate of increase, the 45� material gives the lowest rate of in-
crease and the 90� material is between. Fig. 4d and e give the Mode-II and Mode-III mode mixities, which



Fig. 4. SIFs and mode mixities for the half-plane crack as a function of the external heat flux: (a) Mode-II SIF, (b) Mode-I SIF,
(c) Mode-III SIF, (d) Mode-II mixity, (e) Mode-III mixity.
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Fig. 5. SIFs and mode mixities for the half-plane crack as a function of crack length: (a) Mode-II SIF, (b) Mode-I SIF, (c) Mode-III
SIF, (d) Mode-II mixity, (e) Mode-III mixity.
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Fig. 6. (a) SIFs for half-plane cracks, normalized with the infinite plane case, and corresponding mode mixities, vs distance from the
free boundary; x20 is the vertical distance between the crack tip and the free boundary: (a) Mode-II SIF, (b) Mode-I SIF, (c) Mode-III
SIF, (d) Mode-II mixity, (e) Mode-III mixity.
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are constant as the external heat flux q0 increases; this means that the external heat does not influence the
ratio between Mode-I and Mode-II or Mode-III components. This conclusion of the half plane configura-
tion is the same with of that of the infinite plane.

Fig. 5a–e display the influence of the crack length to the three modes of stress intensity factors and mode
mixities. The crack is located at x20 = 1 and the external heat flux is q0 = 1.0. It can be seen in these figures
that the ply angle of the lamina affects the three modes of stress intensity factors. Fig. 5a–c give the stress
intensity factors for the half plane cracks with different ply angles, as a function of crack length. Clearly, the
three modes of stress intensity factor increase with the length of cracks. The 0� material has the highest
Mode-I and Mode-II stress intensity factors, the 90� material gives the lowest KII and the 45� material gives
the lowest KI. The ply angle influences the mode mixity w as well. The non-zero mode mixity indicates
cracks are prone to propagate away from the original crack orientation. For all composite laminae dis-
cussed here, the mode mixities decrease with the crack length; a comparison of the results shows that
for the 0� material, wII decreases faster with the crack length than the other orientations.

The effect of the free boundary on the stress intensity factors is studied also and the results are shown in
Fig. 6a–e. We denote the distance between the crack and the free boundary by x20. In Fig. 6a, we denote
KII0 the Mode-II stress intensity factor of the crack in an infinite plane. It can be seen that KII decreases as
x20 increases for all of the three materials; as x20 is large enough, KII converges to KII0, which means the
influence of the boundary on KII vanishes. In Fig. 6b, we see KI decreases as x20 increases; As the distance
is large enough, KI approaches almost zero, which converges with the results of the infinite plane. The
Mode-II mode mixity, wII, is studied in Fig. 6d and wII increases as x20 increases as well, which means that
for mixed-mode stress intensity factors, the effect of the Mode-II stress intensity factor component com-
pared with the KI increases as the crack moves away from the boundary. In Fig. 6c, it can be seen that
the KIII for the 45� material increases as x20 increases (where KIII0 is the Mode-III stress intensity factor
of the crack in an infinite plane). As x20 is large enough, KIII converges to KIII0. The Mode-III mode mixity
wIII is shown in Fig. 6e, and wIII increases as x20 increases, which means that, as far as the mixed-mode
stress intensity factors, the effect of KIII component compared with KI component increases as the vertical
distance x20 between the free boundary and the crack increases. From the Fig. 6e and d, it can be seen that
all mode mixities increase with the vertical distance x20 increasing, since for the infinite configuration, the
Mode-I stress intensity factor disappears for all three materials.

It should be noted that the selected geometry and thermal loading in the paper are very basic and simple,
but based on this fundamental solution, the problem for the more practical finite domain can be solved as a
direct extension of this solution, provided the anisotropic material is elastic and superimposition is valid.
For example, the geometry of a dislocation in the more practical finite strip geometry can be decomposed
into two configurations: the first one is a single dislocation located in the bi-material half-plane; the second
geometry is also the half-plane with one dislocation array located along the boundary of the strip and the
density of the dislocation array is determined in such a way that the corresponding stress and thermal
boundary conditions are satisfied. Finally, the technique can be developed as the dislocation-based bound-
ary element method which the potential to solve crack problem in anisotropic structures with arbitrary
geometries and loadings. We plan to work in the future along the line of these extensions of the present
work.
4. Conclusions

Dislocation solutions for a fully-open crack in a general anisotropic half plane under uniform heat flux
have been obtained. The convergence and accuracy of the results for the half plane are verified with the
analytical results for an infinite plane by setting the free boundary infinite. The method presented is applied
to calculate the mixed-mode stress intensity factors. Based on the results, the following conclusions can be
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drawn: (1) For a general anisotropic material, the ply angle affects the mixed mode stress intensity factors.
(2) For the half plane with free boundary parallel to the crack surface, the external heat flux can affect the
mixed-mode stress intensity factors, which increase linearly with the heat flux q0, but q0 does not seem to
influence the mode mixity. (3) Regarding the effect of crack length, the three SIF components increase as
the length of the crack increases; also, the mode mixities decrease with the crack length increasing for all
three materials studied. (4) The distance between the crack and the free boundary influences the mixed
mode stress intensity factors. For all three materials with different ply angles studied, the Mode-I and
Mode-II stress intensity factors, decrease, but the Mode-III SIF increases with the increasing distance be-
tween crack and free boundary; also, the mode mixities increase as the vertical distance increases.
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