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Wrinkling of Wide Sandwich
Panels/Beams With Orthotropic
Phases by an Elasticity Approach
There exist many formulas for the critical compression of sandwich plates, each based on
a specific set of assumptions and a specific plate or beam model. It is not easy to
determine the accuracy and range of validity of these rather simple formulas unless an
elasticity solution exists. In this paper, we present an elasticity solution to the problem of
buckling of sandwich beams or wide sandwich panels subjected to axially compressive
loading (along the short side). The emphasis on this study is on the wrinkling (multi-
wave) mode. The sandwich section is symmetric and all constituent phases, i.e., the
facings and the core, are assumed to be orthotropic. First, the pre-buckling elasticity
solution for the compressed sandwich structure is derived. Subsequently, the buckling
problem is formulated as an eigen-boundary-value problem for differential equations,
with the axial load being the eigenvalue. For a given configuration, two cases, namely
symmetric and anti-symmetric buckling, are considered separately, and the one that
dominates is accordingly determined. The complication in the sandwich construction
arises due to the existence of additional “internal” conditions at the face sheet/core
interfaces. Results are produced first for isotropic phases (for which the simple formulas
in the literature hold) and for different ratios of face-sheet vs core modulus and face-
sheet vs core thickness. The results are compared with the different wrinkling formulas in
the literature, as well as with the Euler buckling load and the Euler buckling load with
transverse shear correction. Subsequently, results are produced for one or both phases
being orthotropic, namely a typical sandwich made of glass/polyester or graphite/epoxy
faces and polymeric foam or glass/phenolic honeycomb core. The solution presented
herein provides a means of accurately assessing the limitations of simplifying analyses in
predicting wrinkling and global buckling in wide sandwich panels/beams.
�DOI: 10.1115/1.1978919�
1 Introduction
The compressive strength of thin sheets can be realized only if

they are stabilized against buckling. In sandwich construction, two
such sheets �face-sheets� are bonded to a core slab of different
�light� material. Both the core and the face-sheets can be isotropic
or anisotropic.

Panels of this construction give rise to a set of problems of
strength, stiffness, and stability analogous to, but by no means
identical with, the well-known problems of ordinary homoge-
neous elastic beam/plates. One of these is “cylindrical buckling.”
Referring to Fig. 1, the panel is so wide that lines along the y axis
can be taken as uncarved. Therefore, a unit width can be treated as
an Euler column. Buckling is either like column buckling �Euler
buckling� or a short wave “wrinkling” of the face sheets. In the
former, the core may exhibit a substantial shearing deformation; in
the latter, it acts like an elastic foundation and the buckling defor-
mation is mainly confined to the layers adjacent to the face sheets.

Wrinkling of a symmetric configuration can occur in a symmet-
ric mode or an antisymmetric one �Fig. 2�. The initial investiga-
tions of this mode of buckling were by Hoff and Mautner �1�,
Goodier and Neou �2� and Gough, Elam, and de Bruyne �3�.
Based on these early investigations, a whole chapter is devoted to
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wrinkling in Allen’s book �4�. Recently, interest has also been in
wrinkling under biaxial loading �Birman and Bert �5��.

The existence of different wrinkling formulas based on various
beam or plate models underscores the need for an elasticity solu-
tion, in order to compare the accuracy of the predictions from the
simple beam/plate formulas. Elasticity solutions for buckling have
become available mainly for the axisymmetric cylindrical shell
geometry, due to the availability of three-dimensional elasticity
solutions for the pre-buckling state and the ease of formulation
afforded by the axisymmetry. In particular, Kardomateas �6� and
Kardomateas and Chung �7� formulated and solved the problem
for the case of uniform external pressure and orthotropic homo-
geneous material �a two-dimensional “ring” assumption was made
in the first paper�. Homogeneous cylindrical shells under axial
compression were studied by Kardomateas �8,9� and by Soldatos
and Ye �10� for combined axial compression and uniform external
pressure �the latter was based on a successive approximation
method�.

As far as sandwich structures, a three-dimensional elasticity
solution for the buckling of a sandwich long shell under external
pressure �again, “ring” assumption� was recently done by Kardo-
mateas and Simitses �11�. In all these studies, a pre-requisite to
obtaining elasticity solutions for shell buckling is the existence of
three-dimensional elasticity solutions to the pre-buckling problem.
For the monolithic homogeneous cylindrical shells, the elasticity
solutions for orthotropy provided by Lekhnitskii �12� were used,
whereas for the sandwich shells, the elasticity solution of Kardo-
mateas �13� was used.

In this paper we again make the simplifying assumption of a
two-dimensional problem by considering a wide plate. Because
the plate is wide, lines along the long dimension can be taken as

uncurved during buckling and the problem reduces to two-
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dimensional �equivalent to a beam rather than a plate assumption�.
This assumption would also allow for a direct comparison with
the wrinkling formulas that exist in the literature.

In the beginning, the elasticity solution for the pre-buckling
state is derived for the case of a sandwich plate with generally
orthotropic phases under axial loading. Subsequently, the govern-
ing buckling equations along with the corresponding boundary
conditions are derived. These reduce to an eigen-boundary value
problem for differential equations with the axial load being the
eigenvalue. The complication in the sandwich construction arises
due to the existence of additional “internal” conditions at the face
sheet/core interfaces. The shooting method is used to solve the
problem thus formulated.

2 Formulation
By considering the equations of equilibrium in terms of the

second Piola-Kirchhoff stress tensor, subtracting these at the per-
turbed and initial conditions, and making order of magnitude as-
sumptions on the products of stresses and strains/rotations, based
on the fact that a characteristic feature of stability problems is the
shift from positions with small rotations to positions with rota-
tions substantially exceeding the strains, the buckling equations
for a Cartesian coordinate system can be obtained �Novozhilov
�14��:

Fig. 1 Definition of the geometry for a sandwich wide panel/
beam under axial compression
Fig. 2 Buckling modes
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In the previous equations, �ij
0 are the values of stresses at the

initial equilibrium position �pre-buckling state�, and �ij and � j are
the values of stresses and rotations at the perturbed position
�buckled state�.

The boundary conditions associated with Eq. �1� can be ob-
tained from the traction �stress resultant� relationships in terms of
the second Piola-Kirchhoff stress tensor, and in the general case of
an external hydrostatic pressure loading �in which case the mag-
nitude of the surface load remains invariant under deformation,
but its direction changes�. By writing these equations for the ini-
tial and the perturbed equilibrium position and then subtracting
them and using the previous arguments on the relative magnitudes
of the rotations, the following boundary conditions on a surface

which has outward unit normal �l̂ , m̂ , n̂� and is under the action of
a hydrostatic pressure, p, are obtained �14�:
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For the bounding surfaces, l̂= m̂=0 and n̂= ±1. These condi-
tions will also be used when we impose traction continuity at the
core/face sheet interfaces.

2.1 Pre-buckling State. Let us assume general orthotropy for
the face sheet, i= f , or the core, i=c:
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where ckl
i are the stiffness constants �we have used the notation

1�x ,2�y ,3�z, see Fig. 1�.
Assuming a pre-buckling displacement field in the form:

u0 = Pd1x; v0 = Pd2y ; w0 = P�d3
z3

3
+ d4z	 , �4a�

would satisfy the displacement continuity conditions at face-sheet/
core interfaces and the symmetry conditions.

Substituting into the strain-displacement and then stress-strain

relations �3�, leads to zero shear strains and stresses:
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�xy
0 = �xz

0 = �yz
0 = 0, �4b�

and normal pre-buckling stresses in the form �for i= f ,c�:

�xx
0�i� = P�c11

i d1 + c12
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i �d3z2 + d4�� , �4c�
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i �d3z2 + d4�� . �4e�

Notice that it is easily seen that the stresses in Eqs. �4b�–�4e�
produce no resultant moment. The constants d1 ,d2 ,d3, and d4 can
be found as follows.

First, the condition of zero tractions at the bounding surfaces,
�zz=0, i.e., at z= ± �c+ f�, gives

c13
f d1 + c23

f d2 + c33
f �d3�c + f�2 + d4� = 0. �4f�

Second, the condition of zero resultant force on the bounding
sides normal to the y axis, 
�yywdz=0, at y=0,w, gives

�c12
f f + c12

c c�d1 + �c22
f f + c22

c c�d2 + �c23
f ��c + f�3 − c3� + c23

c c3�d3

3

+ �c23
f f + c23

c c�d4 = 0. �4g�
Third, the condition of the resultant applied compressive load,

P, on the bounding sides normal to the x axis, 
�xxwdz=−P, i.e.,
at x=0,L, gives

�c11
f f + c11

c c�d1 + �c12
f f + c12

c c�d2 + �c13
f ��c + f�3 − c3� + c13

c c3�d3

3

+ �c13
f f + c13

c c�d4 = −
1

2w
. �4h�

Finally, traction continuity at the face-sheet/core interface, i.e.,
at z= ±c, requires �zz

c =�zz
f , i.e., the fourth condition:

c13
f d1 + c23

f d2 + c33
f �d3c2 + d4� = c13

c d1 + c23
c d2 + c33

c �d3c2 + d4� .

�4i�
Therefore, there are four linear algebraic equations, Eqs.

�4f�–�4i�, which can be used to determine the four unknowns,
d1 ,d2 ,d3, and d4.

Notice that if the phases are isotropic, with Young’s modulus,
Ei and Poisson’s ratio �i then,

c11
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1 − �i

�1 − 2�i��1 + �i�
Ei, �4j�

c12
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�i

�1 − 2�i��1 + �i�
Ei �4k�

2.2 Perturbed State. The buckling equations �1� can be writ-
ten in terms of the buckling displacemenis u ,v, and w by using
the strain vs displacement relations:

�xx = u,x, �yy = v,y, �zz = w,z, �5a�

�xy = u,y + v,x, �xz = u,z + w,x, �yz = v,z + w,y , �5b�

and rotation vs displacement relations:

2�x = w,y − v,z, 2�y = u,z − w,x, 2�z = v,x − u,y , �5c�

and then using the stress-strain relations �3�. The following three
equations are obtained for zero pre-buckling shear stresses. These
equations apply at every point through the thickness, but for con-
venience we have dropped the superscript i,
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The corresponding from Eqs. �2a�–�2c� traction boundary con-

ditions at the bounding surfaces for l̂= m̂=0 and n̂=1 are
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In the petrurbed position we seek two-dimensional equilibrium

modes as follows:

ui = Ui�z�cos �x; vi = 0; wi = Wi�z�sin �x, � =
m�

L
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�8�
Substituting into Eq. �7�, results in the following two linear

homogeneous ordinary differential equations of the second order
for Ui�z� ,Wi�z�, where i=c for 0	z	c and i= f for c	z	 �c
+ f�:
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The associated boundary conditions are as follows.
�a� At the bounding surfaces, z=c+ f , we have the following

two traction-free conditions:

c55
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c33
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�b� At the face-sheet/core interface, z=c, we have the following
four conditions at each of the interfaces.
Displacement continuity:

Uf = Uc; Wf = Wc. �10c�

Traction continuity:
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c33
�f�Wf� − c13

�f��Uf = c33
�c�Wc� − c13

�c��Uc. �10e�

�c� At the axis of symmetry, z=0, we have the following condi-
tions.
For symmetric wrinkling:

Uc� = Wc = 0, symmetric wrinkling �10f�

For antisymmetric wrinkling:

Uc = Wc� = 0, antisymmetric wrinkling �10g�
Notice that since the construction is assumed to be symmetric,

only half of the sandwich needs to be considered.
Solution of the eigen-boundary-value problem for differential

equations. Equations �9� and �10� constitute an eigenvalue prob-
lem for differential equations, with the axial load, P, the param-
eter �two point boundary value problem�. An important point is
that the pre-buckling stresses � j j

0�i��z�, depend linearly on the ap-
plied axial load, P �the parameter�, through expressions in the
form of Eq. �4� and this makes possible the direct application of
standard solution techniques.

With respect to the method used there is a difference between
the present problem and the homogeneous orthotropic body �apart
from being shell geometry� solved by Kardomateas �6�. The com-
plication in the present problem is due to the fact that the displace-
ment field is continuous but has a slope discontinuity at the face-
sheet/core interfaces. This is the reason that the displacement field
was not defined as one function but as two distinct functions for
i= f , and i=c, i.e., the face sheet and the core. Our formulation of
the problem employs, hence, “internal” boundary conditions at the
face-sheet/core interface, as outlined earlier. Due to this compli-
cation, the shooting method �Press et al. �15�� was deemed to be
the best way to solve this eigen-boundary-value problem for dif-
ferential equations. A special version of the shooting method was
formulated and programmed for this problem. In fact, for each of
the two constituent phases of the sandwich structure, we have five
variables: y1=Ui ,y2=Ui� ,y3=Wi ,y4=Wi�, and y5= P. The five dif-
ferential equations are: y1�=y2, the first equilibrium equation �9a�,
y3�=y4, the second equilibrium equation �9b� and y5�=0.

The method starts from the middle of the core, z=0 and inte-
grates the five first-order differential equations from z=0 to the
face-sheet/core interface z=c �i.e., through the core�. At the start
point, z=0, we have three conditions as follows:

�a� for symmetric wrinkling: Uc�=y2=0,Wc=y3=0 and a third
condition of �abritrarily� setting Uc=y1=1.0, therefore we
have two freely specifiable variables, the P=y5 and the
Wc�=y4.

�b� for antisymmetric wrinkling: Uc=y1=0,Wc�=y4=0 and a
third condition of �abritrarily� setting Wc=y3=1.0, there-
fore we have two freely specifiable variables, the P=y5
and the Uc�=y2.

The freely specifiable starting values at z=0 are taken as the
values from the simple plate/beam theory solutions available in
the literature �described later�.

Once we reach the face-sheet/core interface, z=c, the tractions
from the core side are calculated; these should equal the tractions
from the face-sheet side, according to the internal boundary con-
ditions on the face-sheet/core interface, Eqs. �10d� and �10e�. This
allows finding the slopes of the displacements, y2=Uf� and y4
=Wf� for starting the shooting into the face-sheet �notice that the
other three functions, y1=Uf ,y3=Wf and y5= P are continuous
according to Eq. �10c�, and their values at z=c have already been
found at the end of the integration step through the core�. The next
step is integrating the five differential equations from z=c to z
=c+ f , i.e., through the face-sheet. Once the outer bounding sur-
face, z=c+ f , is reached, the traction boundary conditions, Eqs.
�10a� and �10b�, are imposed. Multi-dimensional Newton-

Raphson is then used to develop a linear matrix equation for the
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two increments to the adjustable parameters, which are the y5 and
y4 at z=0 for the case of symmetric wrinkling, and the the y5 and
y2 at z=0 for the case of antisymmetric wrinkling. These incre-
ments are solved for and added and the shooting repeats until
convergence. For the integration phase, we used a Runge-Kutta
driver with adaptive step size control. The method produced re-
sults very fast and without any numerical complication.

As has already been stated, in the numerical scheme, the start-
ing point �guess� is one of the simple formulas in the literature; in
particular, we have used Allen’s �4� solution; therefore, we input
the Allen’s �4� solution as a guess and then obtain the elasticity
solution by the shooting method described; this is done for a range
of m’s, around Allen’s critical m. Therefore, we vary m in the
range of ±20 of the Allen’s critical m �of course, the lower bound
for m is m=1� and obtain the corresponding load; the critical m is
the one that results in the lowest load �critical value�.

Furthermore, for the integration phase we use a Runge-Kutta
driver with monitoring of local truncation error to ensure accuracy
and adjust step size; the initial step size to be attempted is 1 /20th
of the corresponding thickness �core or face sheet� and the nu-
merical tolerance is 5
10−6. A finer initial step size or tolerance
has indicated absolutely no effect on the solution.

3 Plate/Beam Wrinkling Formulas in the Literature,
Results and Discussion

Several formulas can be found in the literature for the critical
wrinkling load. Allen’s book �4� devotes a whole chapter on the
problem. A simple formula can be found in this book for the
critical stress for isotropic core and face-sheet. Allen’s formula �4�
is based on a beam differential equation for the face sheet, as-
sumed to be supported by an elastic medium �the core�, which
extends infinitely on one side of the beam �hence the face is un-
affected by the opposing face�:

� f ,cr = B1Ef
1/3Ec

2/3; where B1 = 3�12�3 − �c�2�1 + �c�2�−1/3,

�11a�

�m�f

L
	

cr

=
�

C
�Ef

Ec
	−1/3

; where C = ���3 − �c��1 + �c�/12�1/3.

�11b�
Goodier and Neou �2� give the following formula for isotropic

core with �c=0 and face-sheet with � f =1/3, where �=Ef /Ec.

� f ,cr

Ef
= 0.655�−2/3�1 +

0.51�1/3 + 0.32

�2/3 + 0.39
	, and �m�f

2L
	

cr

= 0.726�−1/3. �11c�

Hoff and Mautner �1� give the following simple formula:

� f ,cr = 0.91�EfEcGc�1/3; �m�f

L
	

cr

=
�

1.65
Ef

−1/3�EcGc�1/6.

�11d�
Although variations of this formula can be developed depend-

ing on symmetric or antisymmetric cases and also for thinner
cores, Hoff and Mautner �1� concluded from their analysis that the
very simple formula of Eq. �11d� is a conservative estimate of the
critical load for all cases.

Although there are other formulas in the literature, such as
Plantema’s �16�, there seem to introduce only small variations and
the aforementioned three formulas will be taken herein as repre-
sentative and compared with. In particular, Plantema’s �16� critical
load is:

� f ,cr =
0.825

3 2

3 EfEcGc. �11e�

1 − � f
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For � f =0.35 �the value used for the isotropic results�, the factor
before the moduli product term becomes 0.862, which, when com-
pared with the value 0.91 of the Hoff and Mautner �1� formula,
would give a critical load 5.3% lower. For the orthotropic face
sheet with � f =0.26, the factor becomes 0.844, which would give a
critical load 7.2% lower than the Hoff and Mautner �1� formula.

A few recent related studies will be mentioned at this point.
Vonach and Rammerstorfer �17� have also addressed the problem
of wrinkling of orthotropic sandwich plates under general loading.
They tackle the problem by assuming the core to be infinitely
thick and transversely isotropic and the wrinkling wave at the
interface between the face sheet and the core to be sinusoidal.
Thereafter they are able to solve the governing differential equa-
tion �based on plate theory� describing the face sheets deforma-
tion. Another related study is that by Grenestedt and Olsson �18�,
which assumes two layers of different materials attached to a
semi-infinite substrate of a third material and treats the problem
from an elasticity theory. These studies make in general less re-
strictive assumptions than the old formulas and utilize more ad-
vanced methods of analysis but, nevertheless, they still do not
correspond to the configuration of a finitely thick core between
two finitely thick face sheets, which is studied in this paper.

As far as global buckling, the Euler load is simply

PEul =
�2�EI�eq

L2 �EI�eq = 2w�Ef
f3

12
+ Ef f� f

2
+ c	2

+ Ec
c3

3
� .

�12a�
A formula correcting for transverse shear is in Allen’s book �4� as
follows:

Pgl =
PE

1 + �PE2c/Gcw�2c + f�2�
; PE = Efwf�2c + f�2 �2

2L2 .

�12b�

Results are produced for the following configuration: L /h=5
where h=2�f +c� is the total plate thickness and f /h=0.01 to 0.05
�we also assigned the width w /L=2�.

First, the case of both faces being isotropic, is examined. There-
fore, we first consider isotropic phases, Ef /Ec=1000 and 500, � f
=0.35 and �c=0.

Table 1 shows the critical load for Ef /Ec=1,000 and Table 2 for
Ef /Ec=500. Before discussing the results, it should be noticed
that these results have been derived for the isotropic phases with
�c=0, because this has been historically emphasized.

In general, we can make the following conclusions for the iso-

Table 1 Critical loads for Ef /Ec=1,000. Loads normalized with
the Euler load „w/o shear…, Eq. „12a… W=wrinkling „multi-wave…;
GL=global „Euler….

f /h P̃Elast P̃Allen
W P̃Goodier

W P̃Hof f
W P̃Allen

GL

�m� �m� �m� �m�
�% difference from elasticity�

0.01 0.07381 0.06724 0.07368 0.07709 0.2021
Antisymm �24� �W� �25� �23� �27�

�−8.9% � �−0.2% � �+4.4% � �+173.8% �
0.02 0.07393 0.06753 0.07400 0.07742 0.1156
Antisymm �12� �W� �13� �12� �13�

�−8.7% � �+0.1% � �+4.7% � �+56.4% �
0.03 0.07288 0.06854 0.07511 0.07859 0.08199
Antisymm �7� �W� �8� �8� �9�

�−6.0% � �+3.1% � �+7.8% � �+12.5% �
0.04 0.06489 0.06977 0.07646 0.07999 0.06414
Antisymm �1� �GL� �6� �6� �7�

�+7.5% � �+17.8% � �+23.3% � �−1.2% �
0.05 0.05411 0.07110 0.07792 0.08152 0.05310
Antisymm �1� �GL� �5� �5� �5�

�+31.4% � �+44.0% � �+50.7% � �−1.9% �
tropic case:
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�1� The Goodier and Neou �2� formula is the most accurate;
next in accuracy is Hoff and Mautner �1�. In both cases the
accuracy is improved for the thinner face sheets, i.e., for the
smaller f /h ratios.

�2� For the cases considered where wrinkling dominates, the
Goodier and Neou �2� formula is within 5% of the elasticity
value.

�3� For the cases considered, and whenever global buckling
dominates, the Allen’s global buckling formula �4� which
corrects for transverse shear, performs very well, being
within 2% of the elasticity critical load.

�4� It is possible that the global buckling load is less than the
wrinkling formulas, as in the case of Ef /Ec=500, f /h
=0.04, in which PAllen

GL is less than PGoodier
W ; yet wrinkling

dominates according to the elasticity solution. Although the
exact mode of buckling may not be the most important
issue, this indicates the complexity and the difficulty of
drawing the right conclusions when only simple formulas
are employed.

�5� Allen’s �4� formula is conservative whenever wrinkling
dominates. On the contrary, Hoff and Mautner’s �1� for-
mula is non-conservative whenever wrinkling dominates.
But the amount of non-conservatism is quite moderate.

�6� Whenever global buckling dominates, Allen’s �4� formula
which corrects the Euler load for transverse shear, is con-
servative.

�7� Whenever global buckling dominates, the critical load be-
ing only 5%–10% of the Euler load �w/o shear� indicates
the very strong influence of transverse shear effects on
sandwich buckling.

�8� Antisymmetric buckling seems to dominate in the cases
considered.

Next, the case of either or both phases being orthotropic is
examined.

Table 3 gives results for E-glass/polyester unidirectional facings
and R75 cross-linked PVC foam core. E-glass/polyester facings
moduli are �in GPa�: E1

f =40,E2
f =E3

f =10,G23
f =3.5,G12

f =G31
f =4.5;

and the facings Poisson’s ratios: �12
f =0.26,�23

f =0.40, and �31
f

=0.065. The PVC core is isotropic with modulus Ec=0.075 GPa
and Poisson’s ratio �c=0.30.

Since the axial modulus ratio of the facings and the core is
close to 500, the results of Table 3 can be compared with the
results of Table 1. In Table 3, the facings are orthotropic rather
than isotropic and the core, although isotropic, does not have zero

Table 2 Critical loads for Ef /Ec=500. Loads normalized with
the Euler load „w/o shear…, Eq. „12a… W=wrinkling „multi-wave…;
GL=global „Euler….

f /h P̃Elast P̃Allen
W P̃Goodier

W P̃Hof f
W P̃Allen

GL

�m� �m� �m� �m�
�% difference from elasticity�

0.01 0.1222 0.1100 0.1222 0.1261 0.3302
Antisymm �30� �W� �32� �29� �34�

�−10.0% � �0%� �+3.2% � �+170.2% �
0.02 0.1210 0.1089 0.1210 0.1248 0.2056
Antisymm �15� �W� �16� �15� �17�

�−10.0% � �0%� �+3.1% � �+69.4% �
0.03 0.1211 0.1099 0.1222 0.1261 0.1508
Antisymm �10� �W� �11� �10� �11�

�−9.2% � �+0.9% � �+4.1% � �+24.5% �
0.04 0.1188 0.1116 0.1241 0.1280 0.1201
Antisymm �6� �W� �8� �7� �9�

�−6.1% � �+4.5% � �+7.7% � �+1.1% �
0.05 0.1027 0.1136 0.1262 0.1302 0.1006
Antisymm �1� �GL� �6� �6� �7�

�+10.6% � �+22.9% � �+26.8% � �−2.0% �
Poisson’s ratio. We can conclude that:
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�9� The Goodier and Neou �2� formula no longer exhibits the
excellent accuracy that was shown in Table 1. Notice,
though, that this formula was derived for isotropic phases
with �c=0. In fact, in Table 3, this formula has the worst
performance although in Table 1 it had the best perfor-
mance whenever wrinkling occurred.

�10� Allen’s �4� formula is still conservative whenever wrin-
kling dominates. On the contrary, all other wrinkling for-
mulas are non-conservative �again, whenever wrinkling
dominates�.

�11� Global buckling occurs sooner now, even for f /h=0.04.
�12� Whenever global buckling dominates, Allen’s �4� formula,

which corrects the Euler load for transverse shear, is still
conservative.

Table 4 gives results for graphite/epoxy unidirectional facings
and hexagonal glass/phenolic honeycomb core. The graphite/
epoxy facings moduli are �in GPa�: E1

f =181,E2
f =E3

f =10.3,G23
f

=5.96,G12
f =G31

f =7.17; and the facings Poisson’s ratios: �12
f

=0.28,�23
f =0.49, and �31

f =0.0159. The honeycomb core moduli
are �in GPa�: E1

c =E2
c =0.032,E3

c =0.390,G23
c =G31

c =0.048,G12
c

=0.013; and the core Poisson’s ratios: �31
c =�32

c =�21
c =0.25.

Table 3 Critical loads for E-glass/polyester faces and PVC/R75
foam core. Loads normalized with the Euler load „w/o shear…,
Eq. „12a… W=wrinkling „multi-wave…; GL=global „Euler…

f /h P̃Elast P̃Allen
W P̃Goodier

W P̃Hof f
W P̃Allen

GL

�m� �m� �m� �m�
�% difference from Elasticity�

0.01 0.1023 0.09454 0.1165 0.1103 0.2636
Antisymm �30� �W� �30� �28� �32�

�−7.6% � �+13.9% � �+7.8% � �+157.7% �
0.02 0.1012 0.09375 0.1155 0.1093 0.1576
Antisymm �15� �W� �15� �14� �16�

�−7.4% � �+14.1% � �+8.0% � �+55.7% �
0.03 0.1008 0.09473 0.1167 0.1105 0.1136
Antisymm �9� �W� �10� �9� �11�

�−6.0% � �+15.8% � �+9.6% � �+12.7% �
0.04 0.09096 0.09620 0.1185 0.1122 0.08967
Antisymm �1� �GL� �7� �7� �8�

�+5.8% � �+30.3% � �+23.4% � �−1.4% �
0.05 0.07596 0.09790 0.1206 0.1142 0.07464
Antisymm �1� �GL� �6� �6� �6�

�+28.9% � �+58.8% � �+50.3% � �−1.7% �

Table 4 Critical loads for graphite/epoxy faces and glass/
phenolic honeycomb core. Loads normalized with the Euler
load „w/o shear…, Eq. „12a… W=wrinkling „multi-wave…;
GL=global „Euler….

f /h P̃Elast P̃Allen
W P̃Goodier

W P̃Hof f
W P̃Allen

GL

�m� �m� �m� �m�
�% difference from Elasticity�

0.01 0.07037 0.01884 0.02209 0.02196 0.03517
Antisymm �26� �W� �14� �13� �15�

�−73.2% � �−68.6% � �−68.8% � �−50.0% �
0.02 0.06552 0.01917 0.02247 0.02234 0.01826
Antisymm �1� �GL� �7� �6� �7�

�−70.7% � �−65.7% � �−65.9% � �−72.1% �
0.03 0.04576 0.01955 0.02291 0.02278 0.01253
Antisymm �1� �GL� �5� �4� �5�

�−57.3% � �−49.9% � �−50.2% � �−72.6% �
0.04 0.03577 0.01994 0.02337 0.02324 0.00963
Antisymm �1� �GL� �3� �3� �4�

�−44.3% � �−34.7% � �−35.0% � �−73.1% �
0.05 0.02988 0.02035 0.02385 0.02372 0.00789
Antisymm �1� �GL� �3� �3� �3�

�−31.9% � �−20.2% � �−20.6% � �−73.6% �
Journal of Applied Mechanics
In this case the axial modulus ratio of the facings and the core
is very large, close to 5,000. Notice also that in Table 4 both
facings and the core are orthotropic. The results show clearly the
inadequacy of the simple wrinkling formulas and even the global
buckling formula whenever a strongly orthotropic construction is
made. In particular we can conclude that:

�13� Global buckling occurs even sooner now, even for f /h
=0.02. Actually, only in the f /h=0.01 case, wrinkling
dominates.

�14� All formulas are strongly conservative. Whenever global
buckling dominates, Allen’s �4� formula shows a very
large degree of conservatism, being almost one quarter of
the elasticity critical load. The same is true whenever
wrinkling dominates, the wrinkling formulas show a very
large degree of conservatism, being almost a quarter of the
elasticity critical wrinkling load.

The thickness-wise variation of the displacements has been a
matter of great interest. Hoff and Mautner �1� based their analysis
on a linear decay of the transverse displacement, W�z�, whereas
Plantema �16� based his analysis on an exponential decay. Figure
3�a� shows the transverse displacement, W�z� and Fig. 3�b� shows
the axial displacement, U�z�, for the two cases of isotropic phases,
f /h=0.02 and at the critical point. Since the modes are derived by
setting the core displacement at the middle, Wc=1, the displace-
ments are normalized with the corresponding mid-point �z=0�
transverse displacement of the core, Wc0. We see that the variation
is certainly nonlinear through the core in both W�z� and U�z�. The
W�z� has a high slope gradient near the core mid-line, z=0.

Figures 4�a� and 4�b� show the same displacements for the two
cases of orthotropic phases examined and f /h=0.01 and at the
critical point. Double y-axis plots were used in this case because
the scales for the two material systems are very much apart. The
displacements are again normalized with the corresponding mid-
point �z=0� transverse displacement of the core, Wc0. We see that,
again, the variation is nonlinear through the core, in both W�z� and
U�z� and the W�z� has again a high slope gradient near the core
mid-line, z=0. A comparison of the isotropic and the orthotropic
plots shows that the nonlinearities are more pronounced in the
latter case.

A literature search has not revealed detailed finite element data
on the wrinkling of sandwich plates �based on solid elements�,
which can be used to compare with the present solution. This
indicates that there is a need for numerical studies of wrinkling,
based on various finite element �or other numerical� formulations.
In this regard, the present elasticity solution will serve to compare
the accuracy of the various numerical approaches. We can, how-
ever, obtain a validation of the solution developed in this paper by
comparing with the early buckling experiments performed in 1945
by Hoff and Mautner �1�. In these experiments, the face sheet
material was a high strength paper plastic �papreg, isotropic with
Young’s modulus 3
106 lb per in.2�. The sandwich specimens
had a cellular acetate core, also isotropic with Young’s modulus
1,500 lb per in.2 �for both the face sheet and the core, the Pois-
son’s ratio used in the analysis was 0.30�. The length of all the
specimens in the direction of the applied load, L, was 10.5 in. The
width of the specimens perpendicular to the direction of the ap-
plied load, w, varied as well as the thickness of the face sheet and
that of the core. Table 5 shows the critical load, as predicted from
Hoff’s formula �Eq. �11d�� and from the present elasticity formu-
lation for the observed mode of buckling. We can conclude that, in
general, the present elasticity solution predicts loads closer to the
experimentally measured values. In some cases, where the critical
half-wave numbers, m, are high and close to each other, the elas-
ticity and the Hoff’s solution do not differ practically �as in the
third and fourth cases in Table 5�. In other cases, the Hoff’s solu-
tion would be very non-conservative �as in the fifth and seventh

cases in Table 5� and it would predict wrinkling at half-wave
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numbers, m, which are much higher than the elasticity solution;
the latter being much closer to the experiments. Note that Hoff
and Mautner’s paper �1� does not report data on the experimental
half wave numbers. The data in Table 5 can be considered as
offering a validation of the accuracy of the present solution.

The intent of this study was to focus on the wrinkling behavior
of sandwich beams �or wide plates�, hence the illustrative ex-
amples were for very thin facings. Future elasticity studies will
focus on the global buckling behavior which is expected to domi-

Fig. 3 „a… Thickness-wise variation of the transverse displace-
ment, W, for isotropic phases and f /h=0.02 „at the critical
point…. The displacement is normalized with the mid-point „z
=0… transverse displacement of the core, Wc0. „b… Thickness-
wise variation of the axial displacement, U, for isotropic phases
and f /h=0.02 „at the critical point…. The displacement is normal-
ized with the mid-point „z=0… transverse displacement of the
core, Wc0.
nate with thicker facings.
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4 Conclusions
An elasticity solution to the problem of buckling of sandwich

beams or wide sandwich panels subjected to axially compressive
loading is presented. A symmetric section is considered with all
constituent phases, i.e., the facings and the core, being in general
orthotropic. For the configurations considered with both phases
isotropic, the Goodier and Neou �2� wrinkling formula is the most
accurate, next in accuracy being the Hoff and Mautner �1� and in
both cases the accuracy improved for the thinner face sheets. Fur-
thermore, whenever wrinkling dominates, Allen’s �4� formula is

Fig. 4 „a… Thickness-wise variation of the transverse displace-
ment, W, for the orthotropic phases examined and f /h=0.01 „at
the critical point…. The displacement is normalized with the cor-
responding mid-point „z=0… transverse displacement of the
core, Wc0. „b… Thickness-wise variation of the axial displace-
ment, U, for the orthotropic phases examined and f /h=0.01 „at
the critical point…. The displacement is normalized with the cor-
responding mid-point „z=0… transverse displacement of the
core, Wc0.
always conservative but the Hoff and Mautner’s �1� wrinkling
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formula is slightly non-conservative. Whenever global buckling
dominates, Allen’s �4� global buckling formula, which corrects the
Euler load for transverse shear, is conservative and moreover, the
critical load is only 5%–10% of the Euler load �w/o shear�, indi-
cating the very strong influence of transverse shear effects on
sandwich buckling. Antisymmetric buckling seems to be dominant
in the cases considered. With the ortotropic �rather than isotropic�
phases examined, wrinkling is harder to occur, global buckling
taking place for even thinner face sheets. But now the accuracy of
the simple wrinkling and global buckling formulas is seriously
compromised, and there are large deviations from the elasticity
solution. In particular, for the graphite/epoxy facings and glass/
phenolic honeycomb core, whenever global buckling dominates,
Allen’s �4� global buckling formula shows a very large degree of
conservatism, being almost one quarter of the elasticity critical
load. The same is true for this material system whenever wrin-
kling dominates, the simple wrinkling formulas show a very large
degree of conservatism, being almost a quarter of the elasticity
critical wrinkling load. In addition, the results show that the varia-
tion of both the transverse and axial displacement through the core
is nonlinear, more so with the orthotropic phases, and with the
transverse displacement exhibiting a high slope gradient near the
core mid-line. The solution presented herein provides a means of
accurately assessing the limitations of simplifying analyses in pre-
dicting wrinkling and global buckling in wide sandwich panels/
beams.
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tal data from Hoff and Mautner †1‡

ritical load
b
rom Hoff
q. �11d�

m�

Critical load
lb
from present
elasticity
�m�

Buckling load
lb
from experiments
�Hoff and
Mautner �1��

035.8 �21� 2273.9 �24� 2240
035.7 �21� 2284.5 �24� 2220
86.4 �64� 690.7 �60� 750
86.1 �64� 690.4 �60� 700
584.1 �21� 1079.3 �1� 1600
143.0 �38� 1150.2 �36� 1455
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