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Abstract

On the basis of the two-dimensional theory of anisotropic thermoelasticity, a solution is given for the thermal stress intensity factors due to

the obstruction of a uniform heat flux by an insulated line crack in a generally anisotropic body. The crack is replaced by continuous

distributions of sources of temperature discontinuity and dislocations. First, the particular thermoelastic dislocation solutions for an infinite

plane are obtained. Then the corresponding isothermal solutions are superposed to satisfy the traction-free conditions on the crack surfaces.

The dislocation solutions are applied to calculate the thermal stress intensity factors, which are validated by the exact solutions. The effects of

the uniform heat flux, the ply angle and the crack length are investigated.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When a steady heat flow is disturbed by the presence of

cracks, large thermal stresses arise in the neighbourhood of

the crack tips and may cause crack propagation in structural

components. Consequently, the study of the behaviour of

the thermal stresses in the vicinity of the crack tips is of

great practical importance. Anisotropic media are often

encountered in modern technology with the increasing use

of composite and sandwich material systems. In particular,

thermal stress concentrations around material discontinui-

ties in anisotropic bodies can be induced when composite

materials with delaminations are subjected to fire loading.

Solutions of thermal stresses due to a plane crack in an

isotropic semi-plane have been published by H. Sekine [1].

He used continuous distributions of sources of temperature

discontinuity and edge dislocations to model the insulated

line crack along an arbitrary direction. Some basic equations

for crack problems in anisotropic thermoelasticity were

derived by Clements [2]. Atkinson and Clements [3] gave a

solution for the two-dimensional Griffith crack obstructing
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a uniform heat flux in a general anisotropic medium by the

techniques of Fourier transforms and multiple integrations.

Sturla and Barber [4,5] considered the same problem in a

general anisotropic infinite plane by using a Green’s

function and gave the exact solutions of the mixed-mode

thermal stress intensity factors. They extended their method

to the case where the crack is practically close.

From this literature survey, it is obvious that Fourier

transforms or the terms of Green’s functions to represent the

elastic stress and displacement fields have been extensively

used in anisotropic thermoelasticity. But this approach

requires finding a suitable Fourier transforms or Green’s

functions associated with the particular distribution of the

temperature field or the heat flux and the boundary

conditions. For the more complex cases, these approaches

may not be suitable and would require a large effort to solve

the problem.

In this paper, an alternative dislocation method for an

insulated crack in an orthotropic material is presented.

Eshelby et al. [6] and Stroh [7] are among the pioneers who

presented analytical solutions for a dislocation in general

anisotropic materials. Following their work, Atkinson and

Eftaxiopoulos [8] achieved the solution for a dislocation in

an anisotropic half-plane and a bimaterial infinite plane,

using the basic formulation of Stroh [7]. But their work did

not deal with thermal effects.

It should be mentioned, in terms of physical sense, that a

crack with insulated faces perturbs a heat flux, which is
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easily understood. A void or defect in the material can be

represented as a dislocation, so a crack can be modelled as a

dislocation array and therefore it is reasonable that a

dislocation array can perturb a heat flux as a crack does.

Considering the thermal effects, the particular thermo-

elastic solution for a single dislocation obstructing a

uniform heat flux superposed with general isothermal

solutions for the infinite medium is given, then the single

dislocation solution is applied to an insulated line crack,

which is modelled as a distribution of the derived

dislocation solution for the infinite medium. The thermal

stress intensity factors can be calculated from the dislo-

cation solutions and they are validated by the exact solution

of Sturla and Barber [4,5].
2. Formulation
2.1. The temperature field distribution with a single

dislocation in an infinite anisotropic plane

Let x1, x2, x3 denote Cartesian coordinates and suppose that

a homogenous generally anisotropic material occupies the

entire space except for a single dislocation located at an

arbitrary position (x10, x20). The configuration is shown in

Fig. 1. In a homogenous anisotropic medium, the relation

between the heat flux, qi, and the temperature, T, is given:

qi ZKKij

vT

vxj
; (1)

where i,jZ1, 2, 3 and the convention of summing over a repeat

suffix is used. Kij is the thermal conductivity tensor and it

satisfies:KijZKji. If elastic symmetrywith respect to the plane

xiZ0, iZ1, 2, 3, exists, then K12ZK13ZK23Z0 [2].
Fig. 1. A dislocation in an anisotropic infinite plane.
The temperature distribution, T, must satisfy the heat

conduction equation:

KKij

v2T

vxivxj
Z 0; (2)

and this can be satisfied by the temperature:

T Z f ðx1 Ctx2ÞC �f ðx1 C �tx2Þ; (3)

where t is the root with positive imaginary part of the

equation:

K11 C2K12tCK22t
2 Z 0: (4)

Then, the temperature may be written as:

T Z f ðztÞC �f ð�ztÞ; (5)

where ztZx1Ctx2 and f(zt) is an analytic function of zt.

Iff is any function of x1 and x2, then the heat flux defined

by

q1 ZK
vf

vx2
; q2 Z

vf

vx1
; (6)

satisfies Eq. (2) identically. Eqs (1), (5) and (6) then give:

fZ Ltf ðztÞC �Lt �f ð�ztÞ; (7)

q1 ZKLttf
0ðztÞK �Lt �t �f

0
ð�ztÞ; (8)

q2 Z Ltf ðztÞC �Lt �f
0
ð�ztÞ; (9)

where Lt is defined by

Lt ZKK21 KtK22: (10)

A constantMt is introduced and defined from the relation

MtLt Z 1: (11)

Considering the following temperature distribution:

f ðztÞZ
1

4p
Mtdt logðzt KxtÞ; (12)

which satisfies the singularity of the heat flux at the

dislocation point (x10, x20), and where

xt Z x10 Ctx20; (13)

tZBtdt; (14)

Bt Z
i

2
ðMt K �MtÞ; (15)

we can see that along a closed path encircling the

dislocation point (x10, x20), the temperature T changes by

an amount

tZ
i

2
ðMt K �MtÞdt ZBtdt; (16)

where t represents the temperature discontinuity strength at

the dislocation point (x10, x20). Also, from Eq. (7),

the heat flux function corresponding to the temperature



L. Liu, G.A. Kardomateas / Composites: Part A 37 (2006) 989–996 991
Eq. (12) is:

fZ
1

4p
LtMtdt logðzt KxtÞC

1

4p
�Lt �Mtdt logð�zt K �xtÞ:

(17)

The change in f along a closed path about the point

(x10, x20) is:

DfZ
1

4p
LtMtdtð2piÞK

1

4p
�Lt �Mt

�dtð2piÞ; (18)

which represents the net heat source at the dislocation point.

We can see if dt is real, then DfZ0. So from Eqs (16) and

(18), we can see that the assumed temperature distribution

satisfies the constant temperature discontinuity without net

heat source at the dislocation point.
2.2. Stress field distribution with a single dislocation

for an infinite anisotropic plane

Following Clements [2], we can develop a particular

solution for the displacement and temperature fields which

would satisfy the equilibrium and heat conduction equations

in the form:

uk ZCkgðztÞC �Ck �gð�ztÞ; (19)

T Z f ðztÞC �f ð�ztÞ; (20)

where Ck and g(zt) can be obtained from:

g0ðztÞZ f ðztÞ; (21)

DikCk ZGi; (22)

with Dik and Gi given by:

Dik ZCi1k1 CtðCi1k2 CCi2k1ÞCt2Ci2k2; (23)

Gi Z bi1 Ctbi2: (24)

Cijkl and bij are the elastic constants and the stress-

temperature coefficients, respectively. The stress
Fig. 2. The thermoelas
components sij can be determined by:

sij Z ðNij KbijÞf
0ðztÞC ð �Nij KbijÞ �f

0
ð�ztÞ; (25)

where

Nij Z ðCijk1 CtCijk2ÞCk: (26)

The temperature distribution is assumed by Eq. (12), the

function is continuous everywhere except at the dislocation

point, hence uk and sij are continuous everywhere except at

the dislocation point. If we integrate uk and sij along a

closed path encircling the dislocation point, the change of

the displacement and stress cannot equal to zero. These

discontinuities are unacceptable for the particular thermo-

elastic solutions. Therefore a corrective isothermal solution

for the single dislocation should be superposed on the

particular solution to restore continuity of stress and

displacement at the dislocation point. Following Sturla

and Barber [4,5], considering the corrective isothermal

solution superposed on the particular thermoelastic solution,

the stress si2 due to the heat flux is given by:

s
p
i2 ZQif ðztÞC �Qi

�f ð�ztÞ; (27)

where

Qi Z
X
a

LiaAka

LjaAja

Nk2 C �Nk2

2
Kbk2

� �

C
X
a

LiaLka
LjaAja

Ck C �Ck

2

� �
CNi2: (28)

and Aka and Lia are given by Stroh [7].
2.3. Dislocation solutions for an insulated crack

in an infinite anisotropic plane

Considering a fully open crack of length 2a under

uniform heat flux in an infinite anisotropic plane, the

configuration is shown in Fig. 2. The crack remains fully

open and hence is free of tractions, and also prevents the

transfer of heat between its faces. The configuration can be
tic plane crack.
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decomposed into two configurations; the first one is the one

with no crack, which involves no thermal stress; for the

second one, the boundary conditions can be written as:

q2 Z q0; Ka!x1!a; x2 Z x20; (29)

si2 Z 0; Ka!x1!a; x2 Z x20; (30)

q2 Z 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 Cx22

q
/N; (31)

si2 Z 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 Cx22

q
/N: (32)

For the second configuration, the tractions along the

crack surface due to the heat flux Kq0 should be calculated

first and it is associated by the temperature field distribution.

The temperature field T and heat flux field qi distribution

with a single dislocation for an infinite plane can be

determined by Eqs (8), (9) and (12). The crack can be

modelled as a series of dislocations with the temperature

discontinuity strength t(s, x20). Then the heat flux q2 due to

the dislocation series is:

qd2ðx1; x20ÞZ

ðCa

Ka
~q2ðx1; x20; s; x20Þtðs; x20ÞdsZKq0ðx1; x20Þ;

(33)

where ~q2ðx1; x20; s; x20Þ is the heat flux at the position (x1,

x20) due to the unit temperature discontinuity strength at the

dislocation point (s, x20), so ~q2ðx1; x20; s; x20Þ can be

calculated from Eq. (9) by setting the unit temperature

discontinuity strength at the dislocation point. Eq. (33)

should equal to the opposite of the external heat flux to

satisfy the free heat flux along the crack surfaces. Since both

ends of the crack are singular, we use the case I Gaussian

formula [9] to solve Eq. (33), which can be transformed to

NK1 linear algebraic equations:

pa ~q2ðx1;k; x20; sm; x20ÞWm~tð~sm; x20Þ

ZKq0ðx1;k; x20Þ; kZ 1; 2.NK1; mZ 1; 2.N (34)

where sm are the integration points, x1,k are the collocation

points, Wi are the weight functions appropriate to the

quadrature formula employed and N is the number of

integration points. These are given by:

sm Z a~sm; x1;k Z a~tk; ~tð~sm; x20ÞZ
tð~sm; x20Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K ~s2m

p ; (35)

~sm Z cos
pð2mK1Þ

2N

� �
; ~tk Z cos p

k

N

� �� �
; Wm Z

1

N
:

(36)

The temperature continuity outside the crack (i.e. x1Oa)

can be imposed by enforcing the auxiliary condition:ðCa

Ka
tðsÞdsZ 0; (37)
which can impose three additional linear equations:

XN
mZ1

Wm~tð~sm; x20ÞZ 0: (38)

Eqs. (34) and (38) enable us to calculate the temperature

discontinuity strength at the N integration points.

The tractions along the crack surfaces due to the heat flux

can be determined from:

stijðx1; x20ÞZ

ðCa

Ka
s
p
ijðx1; x20; s; x20Þds; (39)

where the equation has a Generalized Cauchy kernel, i.e.

s
p
ijðx1; x20; s; x20Þ represents the particular solution for stress

distribution due to the heat flux along the crack surfaces; it

becomes unbounded as both the integration and collocation

variables, s and x1, tend to the same end-point. Since the

temperature discontinuity strength function t(s, x20) is

singular at each end-point, we can reduce Eq. (39) to a

system of algebraic equations [9]:

stijðx1;k; x20ÞZ
XN
mZ1

s
p
ijðx1;k; x20; sm; x20Þ; (40)

where s
p
ijðx1;k; x20; sm; x20Þ represents the stress at collocation

point (x1,k, x20) due to the temperature discontinuity strength

at integration point (sm, x20). So Eq. (40) can be evaluated

from Eq. (27) by substituting the temperature discontinuity

strength at the N integration points.

To satisfy the traction-free boundary condition at the

crack surfaces, we superpose a solution of the corresponding

isothermal problem with tractions equal and opposite to

those of Eq. (40). This solution is conveniently represented

by a distribution of dislocations of strength bi(s). The

solution with a single dislocation bi(s) for an infinite

anisotropic plane is given by Stroh [7], the corresponding

stress and displacement distribution is:

uk Z
X
a

AkafaðzaÞC
X
a

�Aka
�f að�zaÞ; (41)

si1 ZK
X
a

Liapaf
0
aðzaÞK

X
a

�Lia �pa �f
0
að�zaÞ; (42)

si2 Z
X
a

Liaf
0
aðzaÞC

X
a

�Lia �f
0
að�zaÞ: (43)

For the infinite medium, we can assume:

f ðzaÞZ
1

4p
Majdj logðza KxaÞ; (44)

where

za Z x1 Cpax2; (45)

bi ZBijdj; (46)

Bij Z
i

2
ðAiaMajK �Aia

�MajÞ: (47)



Table 1

Material properties for graphite/epoxy laminate

E11Z144.23 GPa, E22Z9.65 GPa, E33Z9.65 GPa

G12Z4.14 GPa, G13Z4.14 GPa, G23Z3.45 GPa

n12Z0.301, n13Z0.301, n23Z0.49

a11Z0.88 mm/m K, a22Z31.0 mm/m K, a33Z31.0 mm/m K

K11Z4.48 W/m K, K22Z3.21 W/m K, K33Z3.21 W/m K

11 is the longitudinal direction (fiber direction), 33 the transverse, and 22

the normal direction.
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Cracks can be modelled as a series of dislocation with the

densities bi(s, x20) as well. The tractions along the crack

surfaces due to the dislocation series are given:

sdijðx1;x20ÞZ

ðCa

Ka

~Fijðx1;x20;s;x20Þbiðs;x20Þds; ijZ21;22;23

(48)

which equal to the tractions along the crack surfaces due to

the heat flux to satisfy the traction-free condition. ~Fðx1;x20
;s;x20Þ represents the stress at the point (x1, x20) due to the

unit dislocation density b(s, x20), it can be obtained by

Eqs (42) and (43) by setting bZ{1,0,0}, bZ{0,1,0} and

bZ{0,0,1}, respectively; we use the case I Gaussian

formula [9] to solve Eq. (48), which can be transformed to

3(NK1) linear algebraic equations:

pa ~Fijðx1;k;x20;sm;x20ÞhhWm;Wm;Wmii ~bið~sm;x20Þ

ZKstijðx1;k;x20Þ; (49)

where x1,k, sm, Wm are given by Eq. (35) and

~bð~sm;x20ÞZ
bð~sm;x20Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1K ~s2m
p : (50)

In addition, it is necessary to impose the closure

condition, which gives three additional equations:

XN
mZ1

Wm
~blð~sm;x20ÞZ0; lZ1;2;3 (51)

Eqs. (49) and (51) enable us to calculate the dislocation

densities ~bð~sm;x20Þ at the N integration points. Then the

crack tip dislocation densities can be extrapolated from the

N integration points as:

�blð1;ytÞZME

XN
mZ1

bðC1Þ
E

�blð�sm;ytÞ; (52)

�blðK1;ytÞZME

XN
mZ1

bðK1Þ
E

�blð�sNC1Km;ytÞ; (53)

where

bðC1Þ
E Zsin

2mK1

4N
pð2NK1Þ

� �.
sin

2mK1

4N
p

� �
;

bðK1Þ
E ZbðC1Þ

E ; MEZ
1

N
:

(54)

lZ1,2,3 [9].

The stress intensity factors at the crack tip can be

calculated as (Huang and Kardomateas, [10]):

KiðC1ÞZ

ffiffiffiffiffiffi
pa

p

2
RefLiaMajB

K1
jg

~bgðC1Þg; (55)

KiðK1ÞZK

ffiffiffiffiffiffi
pa

p

2
RefLiaMajB

K1
jg

~bgðK1Þg; (56)
where Re[ ] stands for the real part of a complex variable

and ~bgðG1Þ are solved from Eqs. (52) and (53).
3. Results and discussion

First, to validate this method presented above, we

compared the results with the exact solutions given by

Sturla and Barber [4,5]. They gave the thermal stress

intensity factors for full-open crack in a general anisotropic

infinite plane under uniform heat flux. The solutions are

given as:

KI Z lim
x1/a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 KaÞ

p
s22 Z

q0G2

K

a

2

� �3=2

; (57)

KII Z lim
x1/a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 KaÞ

p
s12 Z

q0G1

K

a

2

� �3=2

; (58)

KIII Z lim
x1/a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 KaÞ

p
s32 Z

q0G3

K

a

2

� �3=2

; (59)

where Gi and K are material constants.

The elastic material properties for graphite/epoxy are

listed in Table 1. The fiber orientation q of the lamina is

defined as the angle between the x1 direction and the

lamina’s longitudinal direction; also x2 is the normal

direction of the thickness of the lamina and the x3 direction

is determined by the right-hand rule.

The convergence of the numerical integration method is

very important, this is our first check and convergence

studies were done for a 0, 45 and 908 materials. Illustrative

results are listed in Table 2 for the 458 homogeneous

anisotropic laminate. Notice that the mode I stress intensity

factors are zero for all three materials and the mode III stress

intensity factors are zero for the 0 and 908 materials. We

assume the length of the crack aZ1 mm and the uniform

heat flux q0Z1.0 W/m2. From this table, we can see that the

present results agree very well with the analytical solutions.

As the number of integration points increases, the

numerical results converge with the analytical results

quickly. When NO100, the numerical result is acceptable

compared with the analytical solution. For illustration, in

Fig. 3 the convergence of the method with the number of the

integration points is shown as well. We can obtain excellent

agreements with the analytical results when the number of

integration points NO100.



Table 2

Convergence of KII and KIII for a fully open crack (m1/2 Pa)

N KII KIII

Present Analytical Error % Present Analytical Error %

10 0.39651 0.42615 6.95397 0.11191 0.12027 6.95429

50 0.42024 0.42615 1.38638 0.11860 0.12027 1.38687

100 0.42319 0.42615 0.69319 0.11944 0.12027 0.69343

150 0.42418 0.42615 0.46205 0.11972 0.12027 0.46229

200 0.42467 0.42615 0.3466 0.11985 0.12027 0.34672

250 0.42496 0.42615 0.27714 0.11994 0.12027 0.27771

300 0.42516 0.42615 0.23114 0.11999 0.12027 0.23114

350 0.4253 0.42615 0.19805 0.12003 0.12027 0.19789

400 0.42541 0.42615 0.17318 0.12006 0.12027 0.17377

450 0.42549 0.42615 0.15394 0.12009 0.12027 0.15465

500 0.42555 0.42615 0.13869 0.12010 0.12027 0.13885

550 0.42561 0.42615 0.12601 0.12012 0.12027 0.12638

600 0.42565 0.42615 0.11545 0.12013 0.12027 0.11557

650 0.42569 0.42615 0.10654 0.12014 0.12027 0.10726

700 0.42572 0.42615 0.09903 0.12015 0.12027 0.09894

750 0.42575 0.42615 0.09246 0.12016 0.12027 0.09229

800 0.42578 0.42615 0.08659 0.12017 0.12027 0.08647

N is the number of integration points.

Fig. 4. The Mode-II SIF for a 08 laminate as a function of the uniform

external heat flux q0.
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Fig. 4 displays the influence of the uniform heat flux. The

number of integration points NZ300 and the length of the

crack is aZ1 mm. A 08 homogeneous anisotropic laminate

is used in the analysis. From this figure, it can be seen that

the thermal stress intensity factors increase with the heat

flux linearly. The conclusion agrees with the analytical

solutions.

Fig. 5 gives the mode II stress intensity factors for full-

open cracks with the crack length from 0.5 to 5 mm. We

assume the uniform heat flux is q0Z1.0 W/m2 and the

number of integration points NZ300. It can be seen that

material anisotropy affects the mode II stress intensity

factors. The 08 material gives the highest KII, and the 908

material gives the lowest KII.
Fig. 3. The convergence of the mode II SIF (08).
As for the mode mixities j, which are defined as:

jII Z tanK1 KII

KI

� �
; jIII Z tanK1 KIII

KI

� �
(60)

The mode I stress intensity factors are zero for all three

anisotropic materials under the uniform external heat flux q0
without the external tensile load. In order to check the mode

mixities, the external unit uniform tensile load and heat flux

load are applied together. It was proved that the uniform

tensile load cannot affect the KII and KIII stress intensity

factors. Fig. 6 displays the mode-II mode mixities for fully

open cracks with the crack length from 0.5 to 5 mm as well.

It can be seen that the material anisotropy affects the mode

mixities as well. The mode mixities increase quickly as
Fig. 5. The Mode-II SIF for a fully open crack in an infinite plane as a

function of the crack length.



Fig. 6. The Mode-II mode mixity for a fully open crack in an infinite plane

as a function of the crack length.
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the length of cracks increases for all three anisotropic

materials, which indicates that the crack is prone to

propagate away from the original crack orientation and

the mode-II crack propagation is in dominance.

The effect of fiber angle on the stress intensity factors of

the cracks is also studied and the results are shown in Fig. 7.

We assume the uniform heat flux is q0Z1.0 W/m2 and the

number of integration points NZ300 again. As shown in

Fig. 7, the effect of fiber orientation on the mode-II stress

intensity factors is seen to be significant at 10 and 208 and

depends also on the length of the crack. For other fiber

orientations, the effect on the mode II stress intensity factor

is rather small.

It should be mentioned that in this paper the solid is

treated as a fully anisotropic body, albeit homogeneous.

Therefore, an important characteristic of composite
Fig. 7. The effect of fiber angle on the mode II SIF of a fully open crack in

an infinite plane.
construction, namely anisotropy, is taken into account.

Our study does not look at individual fibers, i.e. the

composite is ‘homogeneized’, which is a routine assumption

made in composite fracture analyses. Using this approach

has been indeed found effective in many composite

configurations and able to predict the experimentally

observed growth of delaminations in both monotonic and

cyclic (fatigue)loading (Kardomateas et al. [11]).

Finally, the paper deals with anisotropy as far as the

elastic deformation, but anisotropy of crack growth

resistance is very important as well. This issue will be

studied in the future by performing experiments to obtain

specific material parameters, which can be used to define

crack growth resistance for anisotropic materials.
4. Conclusions

Solutions for the thermal stress intensity factors of fully

open cracks in a homogenous general anisotropic infinite

plane subjected to a uniform heat flux are derived based on

the analytical dislocation approach. The crack is modelled

as a series of sources of temperature discontinuity and

dislocations. The accuracy and convergence are verified by

comparing with the analytical method. The convergence of

the numerical method is very satisfactory. Results are

presented on the effects of the uniform heat flux, the ply

angle and the crack length.

The great advantage of this method is that it can be used

for complicated models such as the half-plane, the

bimaterial infinite plane, the strip and so on. It can also be

used to solve the problem with complicated external loads,

including heat and mechanical loads. It is more general and

more widely applicable compared with the analytical

method because the basic formula is derived from a single

dislocation model, which is relatively easy to obtain and

satisfy boundary conditions.
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