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Abstract

The paper presents the analysis of deformations and stresses in a large aspect ratio sandwich panel subject to fire or another source of

elevated temperature. The panel, assumed to bend into a cylindrical surface, is simply supported at the edges. The edges are also prevented

from in-plane displacements providing an elastic restraint as the panel stretches due to bending. The solution is obtained in a closed form

when the deformations are small and when geometrically nonlinear effects are incorporated into the analysis. The solution is open to

modification with arbitrary temperature and property distributions through the thickness of the panel, enabling a designer to incorporate the

results from a multitude of heat transfer scenarios so long as the structural problem can be treated as quasi-static.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The problems of durability, real-time and residual

strength and stiffness of sandwich structures subject to fire

or other sources of elevated temperature represent a major

interest for designers. The complexity of the problem is

related to a number of coupled phenomena, including the

dynamic problem of heat transfer, property degradation due

to an elevated temperature, resin decomposition in PMC

facings, real-time strength and stiffness and residual

strength of the structure after fire. In some situations, the

issue is a predicted life of the structure subject to fire, as the

stresses and deformation gradually build up to the instant

when the structure collapses.

Although the temperature and properties of engineering

materials are affected by the stress [1], it is usually possible

to ignore this interaction. In this case, the problems listed

above can be uncoupled, i.e. the dynamic problem of

temperature distribution and material decomposition is

analyzed first and subsequently, real-time maps of distri-

bution of temperature and properties are applied to the stress

and deformation analysis. In the case of a sandwich panel
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subject to fire, the former problem has been addressed in a

number of investigations [2,3]. While the heat transfer

problem is dynamic, the structural problem can be

formulated as a static case since the changes associated

with fire are relatively slow.

The present paper is concerned with the response of a

large aspect ratio sandwich panel subject to fire or another

source of elevated temperature on one of the surfaces. The

panel, bending into a cylindrical surface, is simply

supported along the edges that are also prevented from in-

plane displacements by adjacent structures. The solution is

obtained in a closed form for small deformations and in a

geometrically nonlinear formulation. Numerical results are

obtained using a simplified quasi-static approach to a

distribution of temperature through the thickness. In spite of

this simplification, the results obtained from the solution are

in a qualitative agreement with available experimental data.

In the case where the thermal problem is solved by a more

accurate approach, the corresponding adjustments to the

properties and temperature can be incorporated in the

present analysis without altering its validity.
2. Analysis

Consider a large aspect ratio sandwich panel with cross-

ply facings and a foam core that represents a part of
Composites: Part A 37 (2006) 981–988
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Fig. 1. Structure consisting of a number of identical sandwich panels

supported by frames or bulkheads. Each panel represents a large aspect

ratio plate. Long edges of such plate are constrained against displacements

in the x-direction by adjacent plates.
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the structure consisting of a number of identical panels

supported by frames or bulkheads (Fig. 1). The adjacent

panels severely limit in-plane extension and contraction of

the panel in the x-direction. If the symmetry of load or

geometry is violated, or if only one panel in the

compartment is affected by an elevated temperature, the

conservative approach is to assume simple support along

the long edges.

In the problem considered in this paper, temperature is

nonuniform through the thickness as may be the case if fire

occurs on one side of the panel. The distribution of

temperature through the thickness depends on whether

thermal conductivities of the constituent materials are

affected by temperature. The thickness of the facings is

usually relatively small, so that temperature can be assumed

constant in each facing [4]. The principal temperature

gradient is the core. For example, if the conductivity of the

core is a linear function of temperature, i.e.

kZ k0 Ck1T (1)

where k0, k1 are constants and T is a change of temperature

from the reference value, the variation of temperature in the

core (without taking account of a decomposition of the

material) is given by [4]

T ZK
k0
k1

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1zCS0

p
(2)

Constants of integration S0, S1 are determined from the

thermal boundary conditions at the facing–core interfaces.

If the effect of temperature on the thermal conductivity of

the core material is negligible, temperature varies linearly

from the heated facing to the cooler facing. In the

subsequent discussion, it is assumed that the distribution

of temperature and material properties through the thickness

are known.

The analysis is conducted modeling the sandwich panel

by a first-order shear deformable theory. As a result of a

uniform over the surface temperature varying in the

thickness direction the central part of the panel (at a

sufficient distance from the short edges) deforms into
a cylindrical surface. Accordingly, all derivatives with

respect to the y-coordinate as well as the rotation in the

yz-plane and the displacement in the y-direction are equal to

zero. Accordingly, the equations of equilibrium for the

panel are obtained simplifying the general three-dimen-

sional equations of a first-order theory for shear-deformable

composite laminates. For convenience, a geometrically

nonlinear formulation [5] is recalled here and presented in

the form simplified for the present application.

The strain in the facings that are assumed to be in the

state of plane stress is composed of the contributions of the

strain of the middle plane of the panel and the change of its

curvature (both of them in the xz-plane)

3x Z 30x Czj (3)

where

30x Z u0; x C
1

2
w2
; x kx Zj; x (4)

The core works in transverse shear and the corresponding

strain is

gxz ZjCw; x (5)

In these equations, u0 is a displacement of the middle plane

in the x-direction, w is a deflection of the panel, j is the

rotation in the xz-plane, and ð.Þ;xZ
dð.Þ
dx

.

The stresses in the ith layer of the cross-ply facings are

given by

sx

sy

� �
i

Z
Q11 Ti

� �
Q12 Ti

� �
Q12 Ti

� �
Q22 Ti

� �
" #

3x Kax Ti
� �

Kay Ti
� �

( )
(6)

where Qmn(Ti) and ap(Ti) are transformed reduced stiff-

nesses and the coefficients of thermal expansion, respect-

ively, evaluated at the temperature of the layer.

The stress in the isotropic core is given by

txz ZGxzðTðzÞÞgxz (7)

where the shear modulus Gxz(T(z)) is affected by the local

temperature.

The equations of equilibrium of a panel bent into the

cylindrical surface are [5,6]

Nx; x Z 0; Qx; x CNxw; xx Z 0; Qx ZMx; x (8)

where stress resultants and stress couple are given by

Nx ZA113
0
x CB11kx KNT

x ;

Mx ZB113
0
x CD11kx KMT

x ; Qx ZA55gxz

(9)

In these equations, A11, A55, B11, D11 are the extensional,

coupling, and bending stiffnesses introduced according to

the standard definition (though the engineering constants

employed to evaluate these stiffnesses are affected by

temperature). The thermally induced stress resultant and

stress couple acting in the sandwich panel with cross-ply
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facings can be evaluated from

fNT
x ;M

T
x gZ

ðh=2
Kh=2

½Q11ðTðzÞÞaxðTðzÞÞ

CQ12ðTðzÞÞayðTðzÞÞ�TðzÞf1; zgdz (10)

where h is the total thickness of the panel. The contribution of

the core to the in-plane stress resultants and to the bending

stress couples is usually neglected, i.e. the integration can be

performed over the thickness of the facings only, excluding

the core.Thefirst part of the subsequent analysis (Section2.1)

presents the solution for the geometrically ‘pseudo-linear

problem’ where bending deformations of the panel are small.

Nevertheless, nonlinearity is present since the axial stress

resultant is affected by stretching of the middle plane. The

second part (Section 2.2) shows the stress analysis of the

panel (this can be applied to both pseudo-linear and nonlinear

problems). Finally, Section 2.3 illustrates the approach to the

nonlinear analysis, accounting for moderately large deflec-

tions. The solution of the linear problem is exact. The

nonlinear problem is reduced to a system of seven algebraic

nonlinear equations for six constants of integration and the

axial stress resultant. Exact solution of this system may be

impossible, but the accuracy is limited only by the method of

solution.
2.1. Geometrically pseudo-linear bending problem

In this formulation, the nonlinear term is neglected in the

first relation in Eq. (4). The equations of equilibrium

become

A11u
0
; xx CB11j; xx KNT

x; x Z 0;

A55ðj; x Cw; xxÞCNxw; xx Z 0;

D11j; xx KA55ðjCw; xÞCB11u
0
; xx KMT

x; x Z 0 ð11Þ

Note that the thermally induced axial stress resultant and

bending moment do not vary in the axial direction

(temperature is uniform over the surface of the panel).

Accordingly, the last terms in the first and last relations in

Eqs. (11) disappear. Although Eqs. (11) seems linear, the

nonlinearity is introduced through the axial restraint Nx that

depends on the magnitude of deflections.

The solution of Eqs. (11) must satisfy the boundary

conditions. If the panel is simply supported, these conditions

are:

At xZ0, xZa:

u0 ZwZ 0; Mx ZB11u
0
; x CD11j; x KMT

x Z 0 (12)

Omitting the last term in the first relation in (11) yields

u0; xx ZK
B11

A11

j; xx (13)
Substituting Eq. (13) into the last two Eqs. (11) gives the

following result

w; x ZKjC
1

A55

D11 K
B2
11

A11

� �
j; xx (14)

and

j; xxx Clj; x Z 0 (15)

where

lZ
KNx

1C Nx

A55

� 	
D11 K

B2
11

A11

� 	 (16)

The problem can be reduced to the classical result for a thin

symmetrically laminated plate if jZKwx, A55Z0, B11Z0.

Then if the plate is simply supported, it is easy to show that

Nx,crZKD11(p/a)
2.

If thermally induced compressive stresses are large, Nx is

negative. Consider the case where

1C
Nx

A55

!0 (17)

so that lO0. Accordingly, the solution of Eq. (15) is

jZC1 CC2 sin
ffiffiffi
l

p
xCC3 cos

ffiffiffi
l

p
x (18)

where Ci are constants of integration.

The solution of Eq. (14) becomes

wZC4 KC1xC f ðxÞC2 cos
ffiffiffi
l

p
xK f ðxÞC3 sin

ffiffiffi
l

p
x (19)

where

f ðxÞZ
1ffiffiffi
l

p C
D11 K ðB2

11=A11Þ

A55

ffiffiffi
l

p
(20)

Note that the integration of Eq. (14) added an additional

constant of integration.

Finally, integrating Eq. (13) yields

u0 ZC5 CC6xK
B11

A11

ðC1 CC2 sin
ffiffiffi
l

p
xCC3 cos

ffiffiffi
l

p
xÞ

(21)

Six constants of integration in Eqs. (18), (19) and (21) can

be determined from six boundary conditions (12). There-

fore, given the prescribed value of the thermally induced

stress couple, one can determine u0, w, j as functions of the

stress resultant Nx. However, this solution is not sufficient to

predict thermal bending in terms of applied temperature.

This is because Nx accounts for two effects: (i) the thermally

induced stress resultant NT
x based on the solution of the heat-

transfer problem and Eq. (10) and (ii) deflections of the

panel that result in stretching of its middle plane.

Integrating the first Eq. (9) between xZ0 and xZa, one

obtains the relationship between the axial stress resultant
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and deformations u0 and j:

Nx ZNT
x K

1

a
A11

ða
0
u0; x dxCB11

ða
o
j; x dx

� �
(22)

Now, given a distribution of temperature and stiffness

through the thickness of the panel, it is possible to determine

six constants of integration and Nx from seven linear

Eqs. (12) and (22).

In the case where compression is small, the inequality

(17) is not satisfied, l!0, and the solution of Eq. (15)

becomes

jZC1 CC2 sinh
ffiffiffiffiffiffi
jlj

p
xCC3 cosh

ffiffiffiffiffiffi
jlj

p
x (23)

The approach to the analysis, similar to that described above

for the case where lO0, is omitted for brevity. Of course,

the sign of l is unknown in advance, and the solution may

have to be repeated if this sign was not guessed correctly.

Note that Thornton considered the problem of bending of an

isotropic beam subject to a nonuniform temperature using a

similar approach [7].

2.2. Stress analysis

The thermally induced strains in the facings assumed in

the state of plane stress are given by (inequality (17) is

satisfied)

3x Z u0; x Cz0j; x ZC6 K
B11

ffiffiffi
l

p

A11

C2 cos
ffiffiffi
l

p
xKC3 sin

ffiffiffi
l

p
x

� 	
Cz0

ffiffiffi
l

p
C2 cos

ffiffiffi
l

p
xKC3 sin

ffiffiffi
l

p
x

� 	
ð24Þ

where z 0 is a coordinate of the point where the strain is

evaluated. Now the stresses can be calculated in each layer

of the facings by Eq. (6).

The transverse shear strains in the core are

gxz ZC2 1K f ðxÞ
ffiffiffi
l

p� 	
sin

ffiffiffi
l

p
xCC3 1K f ðxÞ

ffiffiffi
l

p� 	
cos

ffiffiffi
l

p
x

(25)

The core carries only shear stresses available from

Eq. (7). Note that contrary to thin facing layers, where it is

possible to use the average-through-the thickness value of

temperature, the variations of temperature through the

thickness of the core are significant. Accordingly, the shear

modulus is a function of the z-coordinate.

2.3. Geometrically nonlinear problem

The first equilibrium relation in Eq. (8), written to

account for the nonlinear strain–displacement Eq. (4), yields

the axial displacement at the middle plane. It is a nonlinear

function of deflections:

u0; xx ZK
B11

A11

j; xx Kw; xw; xx (26)
The second Eq. (8) is not explicitly affected by nonlinear

effects. It follows that

j; x ZK 1C
Nx

A55

� �
w; xx (27)

Substituting Eq. (27) into Eq. (26) results in the expression

for u0 as a function of w:

u0; xx Z
B11

A11

1C
Nx

A55

� �
w; xxx Kw; xw; xx (28)

Eq. (27) can be integrated yielding the expression for the

rotation

jZK 1C
Nx

A55

� �
w; x CC 0

4 (29)

where C 0
4 is a constant of integration.

The nonlinear version of the third equilibrium Eq. (8) is

D11j; xx CB11ðu
0
; xx Cw; xw; xxÞKA55ðjCw; xÞKMT

x; x Z 0

(30)

After the substitution of Eqs. (28) and (29) and transform-

ations, this equation assumes the form

w; xxx Klw; x KhC 0
4 Z 0 (31)

where l is defined by Eq. (16) and

hZ
A55

ðD11 K ðB2
11=A55ÞÞ 1C Nx

A55

� 	 (32)

Nonlinear terms cancel out in Eq. (31), so that the solution

can be obtained in the closed form.

The integration of Eq. (31) yields (for the case where

lO0)

wZC 0
1 CC 0

2 sinh
ffiffiffi
l

p
xCC 0

3 cosh
ffiffiffi
l

p
xK

hC 0
4

l
x (33)

in which we have three additional constants of integration.

Note that a deviation of the nonlinear solution from its linear

counterpart is reflected in a difference between hyperbolic

and trigonometric functions that becomes essential only at

large values of the argument.

Finally, integrating Eq. (28) twice results in the solution

for the axial displacement

u0 ZC 0
5 CC 0

6xC
B11

A11

1C
Nx

A55

� �
C 0
2

ffiffiffi
l

p
cosh

ffiffiffi
l

p
x

�
CC 0

3

ffiffiffi
l

p
sinh

ffiffiffi
l

p
xK

h

l
C 0
4

	
KFðC 0

2;C
0
3;C

0
4Þ ð34Þ

where F(C 0
2,C

0
3,C

0
4) is a nonlinear function that is easily

evaluated. Two additional constants of integration in

Eq. (34) bring the total number of constants that have to

be specified to six (as in the linear case).

Six constant of integration have to be determined from

the boundary conditions that do not differ from those for



Table 2

Stiffness of the core materials at room temperature

Material H45 H60

E (MPa) 40.0 60.0

G (MPa) 18.0 22.0
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the linear case, except for the expression for the bending

moment:

At xZ0, xZa:

u0 ZwZ 0; Mx ZB11ðu
0
; x C

1

2
w2
; xÞCD11j; x KMT

x Z 0

ð35Þ

The solution procedure is similar to the linear case,

though it may be tedious due to nonlinearities. The axial

stress resultant is related to the deformations by the

nonlinear version of Eq. (22):

NxZNT
x K

1

a
A11

ða
0
ðu0;xC

1

2
w2
;xÞdxCB11

ða
o
j;x dx

� �
(36)
3. Numerical results

The solution of the nonlinear problem requires us to

determine seven unknowns (C 0
1, C

0
2, C

0
3, C

0
4, C

0
5, C

0
6, l)

from six boundary conditions and Eq. (36). This nonlinear

problem was solved by the Newton–Raphson iteration

method.

The room temperature properties of the layers of cross-

ply facings considered in the examples corresponded to a

typical graphite/epoxy:

E1 Z 120:87 GPa; E2 Z 18:58 GPa; m12 Z 0:276;

a1 Z 1:977 mm=m per 8C; a2 Z 3:2881 mm=m per 8C

The variations of the stiffness of the facings with

temperature are reflected in Table 1, obtained by assuming

that the effect of temperature is similar to that for glass/

epoxy [8]. The room-temperature properties of two grades

of Divinycell core considered in the examples are presented

in Table 2.

The variation of the shear modulus of the core with

temperature is assumed in the form Gc(T)ZGc[1KG1

(T/Trf)], where Gc is the value at the room temperature Trf
and G1 is a nonlinear function of T/Trf given by

G1

T

Trf

� �
Z0:0068

T

Trf

� �3

K0:070
T

Trf

� �2

C0:27
T

Trf
K0:29

(37)

Eq. (37) is applicable if the ratio T/TrfO3 Note that Eq. (37)

yields variations of the shear modulus of the core with

temperature that are in a qualitative agreement with those

reported for a typical thermoplastic foam [9].
Table 1

Variations of the stiffness of the facing material with temperature

T (8C) 20.0 50.0 75.0 100.0 125.0

E1 (GPa) 120.87 97.20 87.30 76.06 67.73

E2 (GPa) 18.58 14.94 13.42 11.69 10.41
The length of the short edges of the sandwich panel

considered in the examples was aZ101.6 mm, the core was

20 mm thick and two thickness of the facings was either

hfZ2.5 or 5.0 mm. As was shown in Ref. [4] for the case of

quasi-isotropic glass vinyl ester facings and a polymeric

20 mm thick core, temperature remains practically uniform

in the facings and its variation is mostly limited to the core.

An example of such analysis presented in Table 3 confirms

the validity of this statement. In this table, T0, T1, T2 and T3
are temperatures of the surface of the heated facing, heated

facing–core interface, colder facing–core interface and the

surface temperature of the colder facing, respectively.

Accordingly, in the following examples, the temperature

of the heated facing was assumed constant and equal to T0,

while the temperature of the opposite facing was found from

the static heat transfer problem, assuming that the air

outside this facing is at 20 8C.

The axial stress resultant is shown as a function of the

temperature of the heated facing in Fig. 2 and Table 4. The

axial force increases from zero to a maximum value but

once temperature reaches a certain level, the tendency is

reversed, i.e. the axial force begins to decrease (the

increasing force at temperatures below 50 8C is not

shown). Physically, such decrease is due to tensile reactive

stresses at the immovable in the x-direction edges attributed

to stretching produced by bending (similar to the reaction of

immovable supports of a beam subject to large bending

deformations). The thickness of the facings has little effect

on the magnitude of the force.

The shape and magnitude of deflections along the span of

the panel are shown in Fig. 3 (a similar result obtained for a

panel with thicker facings is omitted for brevity). As follows

from this figure, deflections increase until temperature

reaches the value of T0Z100 8C and begin to decrease at

higher temperatures. Deflections of the panels with various

facing thickness and core materials are also shown as a

function of temperature in Fig. 4. As is clearly observed in

this figure, deflections experience a rapid buildup as

temperature varies between the room value and about

60 8C. At higher temperatures, the increase of deflections
Table 3

Temperature distribution along the facing–core interfaces and on the

surfaces of a sandwich panel (hfZ5.0 mm)

T0 50.0 75.0 100.0 125.0

T1 49.7 74.5 99.3 124.0

T2 25.4 29.8 34.3 38.7

T3 25.1 29.3 33.5 37.8
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Fig. 3. Maximum deflections of the panel as a function of the temperature of

the heated surface T0. The thickness of the facings is hfZ2.5 mm. Case (a):

core H45; Case (b): core H60.

Fig. 4. Maximum deflections of the panel as a function of the temperature of

the heated surface T0, the thickness of the facings and the material of the

core.
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0.2
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0.4
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 Core H60
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Fig. 2. Absolute value of the axial edge restraint stress resultant (MN!m)

as a function of the exposed surface temperature T0. The facings are 2.5 mm

thick.

Table 4

Absolute value of the axial edge restraint stress resultant (MN!m) as a

function of the exposed surface temperature T0

T (8C) 50.0 75.0 100.0 125.0

H45 (hfZ2.5 mm) 0.340791 0.326334 0.304722 0.247510

H60 (hfZ2.5 mm) 0.416041 0.398344 0.371917 0.302148

H45 (hfZ5.0 mm) 0.341365 0.327056 0.305511 0.248027

H60 (hfZ5.0 mm) 0.417263 0.399664 0.373288 0.303093
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slows down and eventually reverses itself. Predictably, a

thicker core resulted in a decrease in deflections.

Note that the phenomena of the reversal of deflections

with a higher temperature have been reported in literature.

In particular, Meyers and Hyer observed such a reversal of

deflections of a composite panel subject to a linearly

distributed through thickness temperature [10]. A recent

paper of Lattimer et al. [11] on deformations of sandwich

panels subjected to fire also supports the observations in the

present paper.

A distribution of the maximum transverse shear

stresses in the core throughout the span of the panel is

depicted in Fig. 5. The variations of these stresses at the

supports where they reach the extreme values are shown

in Fig. 6 as a function of temperature. The observed
0 20 40 60 80 100

–3.0

–1.5

0.0

1.5

3.0

 T0 = 50 °C
 T0 = 75 °C
 T0 = 100 °C
 T0 = 125 °C

σc Max, Mpa

 X,mm 

Fig. 5. A distribution of the maximum shear stresses along the span of the

panel as a function of the temperature of the heated surface T0. The core is

H45, the thickness of the facings is hfZ2.5 mm.
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Fig. 6. Maximum transverse shear stress as a function of the temperature of

the heated surface T0, the thickness of the facings and the material of the

core.
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tendency in variations of deflections with an increasing

temperature is mirrored by the similar trend for the

transverse shear stress. The magnitude of shear stress

was reduced in the panels with a thicker core, reflecting

a decrease in deflections in such panels. Note that the

magnitudes of the stresses at the supports shown in

Fig. 6 indicate that the loss of shear strength may

become a possible mode of failure in the problem

considered in the paper.
4. Conclusions

The problem of deformations and stresses in a large

aspect ratio sandwich panel subject to an elevated

temperature on one of the surfaces that results in cylindrical

bending is considered in the paper. The panel is simply

supported and the long edges are prevented from in-plane

displacements. The formulation enables us to account for a

deterioration of the properties of the constituent phases, i.e.

the matrix of the facings and the core material. Both

geometrically nonlinear as well as transverse shear

deformations are taken into account. While a simultaneous

effect of geometrically nonlinear and transverse shear

deformations is seldom encountered in practical problems,

in the presence of an elevated temperature it may become

essential due to a degradation of the material properties

combined with resin decomposition.

As follows from the analysis of deformations and stresses

of representative panels, they experience a significant

buildup as temperature of the heated surface increases

from the room value to about 60 8C. At higher temperatures,

the rate of this buildup slows and eventually, at the value of

the surface temperature exceeding about 100 8C, deflections

and stresses begin to decline. Such behavior is in agreement
with theoretical and experimental results reported in

literature.

An increase in the thickness of the facings does not

substantially change the distribution of temperature through

the thickness as the temperature of each facing practically

does not vary between the surface of the facing and its

interface with the core. Such relatively little effect of the

thickness of the facings on a distribution of temperature was

explained by a mismatch between thermal conductivities of

typical facing and core materials [4]. Thicker facings

resulted in smaller deflections of the panel and reduced

stresses.

As follows from numerical examples dealing with the

maximum transverse shear stress in the core that occurs

along the edges of the panel, this stress may reach dangerous

levels, even if temperature changes are relatively modest. In

the panels with thin facings experiencing significant

deformations, the failure of the core may become a

possibility.

It is emphasized that the stress analysis of sandwich

panels operating in high temperature environments should

account for variations in the strengths of facings and core

associated with the instantaneous temperature values at the

point of interest. In addition, it is necessary to account for

the process of resin decomposition that may significantly

affect the strength.
Acknowledgements

The financial support of the Office of Naval Research,

Grant N00014-03-1-0189, and the interest and encourage-

ment of the Grant monitor, Dr Luise Couchman, is

gratefully acknowledged.
References

[1] Dunn SA. Using nonlinearities for improved stress analysis by

thermoelastic techniques. Appl Mech Rev 1997;50(9):499–513.

[2] Krysl P, Ramroth W, Asaro RJ. FE modeling of FRP sandwich panels

exposed to heat: uncertainty analysis. Proceedings of the SAMPE

meeting, Long Beach, CA; 2004. p. 16–20.

[3] Gibson AG, Wright PNH, Wu Y-S, Evans JT. Laminate theory

analysis of composites under load in fire. Proceedings of the SAMPE

meeting, Long Beach, CA; 2004. p. 16–20.

[4] Birman V. Effect of elevated temperature on wrinkling in composite

sandwich panels. Proceedings of the SAMPE meeting, Long Beach,

CA; 2004. p. 16–20.

[5] Tauchert TR. Temperature and absorbed moisture. In: Turvey GJ,

Marshall IH, editors. Buckling and postbuckling of composite plates.

London: Chapman & Hall; 1995. p. 190–226.

[6] Bert CW. Shear deformation and sandwich configurations. In:

Turvey GH, Marshall IH, editors. Shear deformation and sandwich

configurations. Buckling and postbuckling of composite plates.

London: Chapman & Hall; 1995. p. 157–89.

[7] Thornton EA. Thermal stresses for aerospace applications. Reston,

Virginia: AIAA Press; 1996. p. 397–406 [chapter 10].



V. Birman et al. / Composites: Part A 37 (2006) 981–988988
[8] Kulkarni AP, Gibson RF. Nondestructive characterization of effects

of temperature and moisture on elastic moduli of vinyl ester resin and E-

glass/vinylester composite. In: Sankar BV, Ifju PG, Gates TS, editors.

Proceedings of the American society for composites 18th annual

technical conference, CD-ROM,Paper #122,Gainesville, Florida; 2003.

[9] Elkin R. Personal communication; 2004.
[10] Meyers CA, Hyer MW. Thermally-induced geometrically nonlinear

response of symmetrically laminated composite plates. AIAA Paper

AIAA-92-2539-CP; 1992.

[11] Lattimer BY, Ouellette J, Sorathia U. Large-scale fire resistance tests

on sandwich composites. Proceedings of the SAMPE meeting, Long

Beach, CA; 2004. p. 16–20.


	Response of a sandwich panel subject to fire or elevated temperature on one of the surfaces
	Introduction
	Analysis
	Geometrically pseudo-linear bending problem
	Stress analysis
	Geometrically nonlinear problem

	Numerical results
	Conclusions
	Acknowledgements
	References


