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Abstract

The response of composite columns under axial compressive loading, and in which a non-uniform temperature distribution through the

thickness exists, is investigated. This non-uniform temperature distribution can develop when one side of the structures is exposed to heat

flux. In this paper, we assume that this distribution is linear, which corresponds to a steady state temperature profile due to heat conduction.

The degradation of the elastic properties with temperature (especially near the glass transition temperature of the matrix) is accounted for, by

using experimental data for the elastic moduli. Furthermore, the formulation includes transverse shear and it is done first for the general non-

linear case and subsequently linearized. Due to the non-uniform stiffness and the effect of the ensuing thermal moment, the structure behaves

like an imperfect column, and responds by bending rather than buckling in the classical Euler (bifurcation) sense. Another important effect of

the non-uniform temperature is that the neutral axis moves away from the centroid of the cross-section, resulting in another moment due to

eccentric loading, which would tend to bend the structure away from the heat source. Simple equations for the response of the column are

derived and results are presented for the variation of the deflection with the heat flux, as well as for the combined effects of the applied load

and heat flux. It is found that the thermal moment would tend to bend the structure away from the heat source for small temperatures (small

heat fluxes) but towards the heat source for large temperatures. On the contrary, the moment induced due to the eccentric loading would

always tend to bend the structure away from the heat source. Results indicate the combined influences of these moments and that of axial

constraint.
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1. Introduction

Fiber-reinforced polymeric composites are used exten-

sively in aerospace, marine, infrastructure and chemical

processing applications. In these applications, events

creating a heat flux (e.g. due to fire), and their resulting

effects on the structural integrity, are of considerable

concern. In addition to the implications for design,

quantitative information regarding the nature of the strength

loss is required to make decisions regarding, for example,

the seaworthiness of a ship that has sustained fire damage.

Many of the thermal properties of composites related

to fire have been thoroughly studied and are well
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understood, including ignition times, heat release rates,

smoke production rates and gas emissions [1–7]. Also,

some recent work into the post-fire residual properties

has been conducted, for example, a preliminary investi-

gation into the effect of fire damage on the edgewise

compression properties and failure mechanisms of

sandwich composites [7] showed large reductions to the

edgewise compression properties of phenolic-based sand-

wich composites despite having good flame resistance.

However, one important gap in the understanding of

composites is their response and structural integrity due

to the combined effect of mechanical loading and thermal

loading due to fire. This paper addresses this issue as far

as compressive loading, which in an otherwise purely

mechanical loading (no fire) would lead to bifurcational

(Euler) buckling.

One important characteristic of fiber-reinforced poly-

meric composites is that increases in temperature cause a

gradual softening of the polymer matrix material with a

significant effect near the glass transition temperature, Tg.
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Recent experiments on E-glass vinyl ester composites,

conducted by Kulkarni and Gibson [8] can be used as a basis

for including the resulting non-uniform stiffness

distribution.

When heat flux is applied on one side of a column/plate, a

non-uniform temperature develops through the thickness.

Since the modulus of elasticity of polymeric composites

depends on temperature, this non-uniform temperature

results in a non-uniform distribution of stiffness through

the thickness. In addition, a thermal moment is developed,

which causes bending of the column from the very start of

heat exposure when only the slightest change of temperature

occurs. An additional ‘eccentricity moment’ is created since

the non-uniform temperature induces a shift of the neutral

axis away from the centroid of the cross-section. Thus, the

column bends like an imperfect beam (even if it is initially

straight) and cannot buckle in the classical Euler (bifur-

cation) sense. In this paper, we investigate the general

bending response of such a column that is pinned at both

ends, with an applied axial force. In simple terms, the

column is subjected to both (1) an axial force that can cause

buckling at the Euler load if it is large enough; (2) a thermal

moment that causes bending immediately; and (3) an

‘eccentricity moment’ induced by the neutral axis moving

away from the centroid of the cross-section, resulting in

eccentric loading. The details of the formulation are

outlined in Section 2.
2. Formulation

Let us assume a symmetric cross-section of thickness h.

First, we derive the temperature distribution through the

thickness. Assuming steady state, the temperature, T,

satisfies the heat conduction equation

d2T

dy2
Z 0; K

h

2
!y!

h

2
: (1a)

At the side of the fire, yZKh/2, a constant heat flux, Q,

is supplied by the fire:

KK
dT

dy
ZQ at yZKh=2; (1b)

and at the other side, yZh/2, we have a ‘radiation’ boundary

condition to the air at room temperature, T0:

KK
dT

dy
ZHðT KT0Þ at yZ h=2: (1c)

In these equations, K is the thermal conductivity, and

H is the surface conductivity from the composite surface

to the air. Of course, the temperature could be regarded as

a function of time and in this case the heat conduction

equation can be solved with the help of Laplace

transforms [9], but we shall not address this problem in

this paper.
It is easy to see that the steady temperature distribution,

which satisfies (1a)–(1c), is linear and given by

T KT0 ZDT ZK
Q

K
yC

Q

KH
KCH

h

2

� �
Z

Q

K
ðKyCcÞ;

(2a)

where

cZ
K

H
C

h

2
: (2b)

This is the temperature distribution, which will be used in

the following; we shall also denote by TQ the surface

temperature on the side of the impending heat flux.

Regarding the stiffness, E, it is well known that the

modulus of polymers depends strongly on the temperature

and especially on how close the temperature is to its glass

transition temperature, Tg. Around Tg, the modulus drops by

a factor of 100 or more [10]. For composites with polymeric

matrices there is not much data in the literature yet, but it is

logical to expect a noteworthy dependence on temperature,

T not as strong as with pure polymers. In fact, a recent paper

by Kulkarni and Gibson [8] studied the effects of

temperature on the elastic modulus of E-glass/vinyl-ester

composites. By using vibrating beam samples and the

impulse–frequency response method, they provided

measurements of temperature dependence of the elastic

modulus of the composite in the range of 20–140 8C. The

glass transition temperature of the matrix was TgZ130 8C.

Near this temperature the Young’s modulus shows a

significant variation but below Tg the variation is small. If

we denote by E0 the modulus at room temperature, T0Z
20 8C, then we have reduced the data in Kulkarni and

Gibson [8] to the following equation for the modulus as a

function of temperature, E(T):

E

E0

Z1Ka1
TKT0
TgKT0

� �
Ca2

TKT0
TgKT0

� �2

Ka3
TKT0
TgKT0

� �3

Z1Ka1
DT

DTg

� �
Ca2

DT

DTg

� �2

Ka3
DT

DTg

� �3

:

(3)

For the present E-glass/vinyl-ester, E0Z3!108 psi and

a1Z0.348, a2Z0.715 and a3Z0.843. The composite

studied had a fiber volume fraction of 0.516 and

consisted of four sub-layers with the orientation of each

sub-layer [0/90/C45/K45/Random].

The above equation captures the physics of the non-

linear dependence of the composite on the glass transition

temperature of the matrix, Tg, and is expected to be able to

represent such behavior for other composites as well (with

proper adjustment of the coefficients). Around Tg of the

matrix, the modulus of this composites drops to about half

its value at room temperature.

It is assumed that the composite remains in its original

condition and there is no charring. Next, let us define an
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‘average’ modulus, Eav, and a ‘first and second moment’ of

the modulus with respect to the mid-surface x-axis, Em1 and

Em2, respectively, by:

EavAZ

ð
A

E dA; Em1hAZ

ð
A

Ey dA; Em2I Z

ð
A

Ey2 dA:

(4a)

Then by using (2) and (3) we obtain the ‘average’

modulus

Eav ZE0 1Ka1
Q

K DTg
cCa2

Q

K DTg

� �2

c2 C
I

A

� ��

Ka3
Q

K DTg

� �3

c3 C3c
I

A

� ��
;

(4b)

the ‘first moment’ of the modulus

Em1 ZE0

Q

K DTg

� �
I

Ah
a1 Ka2

Q

K DTg

� �
2c

�

Ca3
Q

K DTg

� �2

3c2 C
I�

I

� ��
;

(4c)

and the ‘second moment’ of the modulus:

Em2 ZE0 1Ka1
Q

K DTg

� �
cCa2

Q

K DTg

� �2

c2 C
I�

I

� ��

Ka3
Q

K DTg

� �3

c3 C3c
I�

I

� ��
;

(4d)

In the above relations, A is the cross-sectional area, I is

the moment of inertia ðIZ
Ð
A y

2 dAÞ and the I* is an area

property defined as:

I� Z

ð
A

y4 dA: (4e)

Also, in deriving (4b)–(d), we have made use of the fact

that, due to the symmetric section,ð
A

y dAZ

ð
A

y3 dAZ

ð
A

y5 dAZ 0:

For a rectangular cross-section of width b and height h,

AZbh, IZbh3/12 and I*Zbh5/80.

Due to the non-uniform modulus, the neutral axis of the

column is not at themid-surface. The distance, e, of the neutral

axis from the mid-surface axis, x, is determined from:

e

ð
A

EðyÞdAZ

ð
A

EðyÞydA; (4f)

which, by use of (4a) leads to

eZEm1h=Eav; (4g)

where Eav and Em1 are defined in (4b) and (4c).
Assuming a thermal expansion coefficient, a, indepen-

dent of temperature, the thermal force is:

NT
x Z

ð
A

Ea DT dA; (5a)

which, by use of (2) and (3), results in:

NT
x ZE0

Qa

K
cAKa1

Q

K DTg
ðc2AC IÞCa2

Q

K DTg

� �2�

!ðc3AC3cIÞKa3
Q

K DTg

� �3

ðc4AC6c2IC I�Þ

�
;

(5b)

if the thermal force can be developed due to the constraints

at the ends of the beam, it cause the bar to buckle; however,

the problem is not a bifurcation because a thermal moment

is also developed due to the non-uniform stiffness

distribution.

The thermal moment (with respect to the neutral axis of

the beam) is:

MT
x Z

ð
A

Ea DTðyKeÞdA; (5c)

Again, by use of (2) and (3), and with the definitions of

(4f) and (4g), the integral in (5c) is found to be:

MT
x ZKE0

Qa

K
IKa1

Q

K DTg
2cICa2

Q

K DTg

� �2�

!ð3c2IC I�ÞKa3
Q

K DTg

� �3

4cðc2IC I�Þ

�
KeNT

x ;

(5d)

This thermal moment would cause bending of the

column. In deriving (5b) and (5d), we have made use

again of the fact that, due to the symmetric section,ð
A

y dAZ

ð
A

y3 dAZ

ð
A

y5 dAZ 0:

The problem now is to determine the response of the

column under the influence of both NT
x andMT

x , which as has

already been noted, changes the character of the problem

from bifurcation buckling to a bending or bowing problem.

We shall consider two cases: (a) immovable ends (con-

strained), in which case an axial reaction develops at the

supports, and (b) ends free to move axially and an axial

compressive load is applied.

First of all, we assume immovable conditions at both

pinned ends. In this case, an axial reaction force,P, develops as

the heat flux is applied. The axial force Nx does not vary with

axial position x [11]. Thus, it can be seen Nx equal toKP, the

support force at the ends, due to the axial equilibrium.

However, unlike the case of a uniformly heated column, the

force P is less than NT
x because the transverse deflection, v(x),

of the bar during heating decreases the axial force at
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the supports. That is, the column bends away from its original

straight configuration and relieves some of the force at the

immovable ends. Note that the known NT
x is greater than the

unknownP, whichwemust find. Thus,P is a derived quantity,

not a controlled quantity. The controlled quantity is the

thermal loading due to the fire, and the response quantity is the

mid-span transverse deflection of the bar.

Let us denote by u0 and v0 the x and y displacements at

the neutral axis and by q the rotation of the cross-section due

to bending. The non-linear strain at the neutral axis, yZe, is:

e0ðxÞZ u0;x C
1

2
q2: (6a)

In the following we account for transverse shear

following the procedure in [12]. In particular, we can set:

dv0
dx

Z sinðqCgeqÞ; (6b)

where geq is the equivalent shear angle, i.e. the difference

between the slope of the deflected beam axis and the

rotation q of the cross-section due to bending.

It is reasonable to assume that the shear modulus, G, will

change with temperature in the same manner as the

extensional modulus, E. Therefore, taking into account (2)

and (3), we can write:

GðyÞZG0 1Ka1
Q

K DTg
ðKyCcÞCa2

Q

K DTg

� �2�

!ðKyCcÞ2 Ka3
Q

K DTg

� �3

ðKyCcÞ3
�
:

(6c)

An effective shear modulus, �G is now defined based on

the shear compliance as [12]:

h �GZ

ðh=2
Kh=2

dy

GðyÞ
: (6d)

This integral is evaluated numerically as a simple closed

form expression cannot be obtained.

The equivalent shear angle, geq, is then defined as [12]

geq Z
bP sin q

�GA
; (6e)

where b is the shear correction factor which accounts for the

non-uniform distribution of shear stresses throughout the

cross-section.

Then, the strain at an arbitrary point, �eðx; yÞ, can be

represented by:

�3ðx; yÞZ 30ðxÞK ðyKeÞ
dðqCgeqÞ

dx
: (6f)

When the resulting stress from (6f) is integrated through

the section, the resultant should equalKPCNT
x , i.e.:ð

A

EðyÞ�3ðx; yÞdAZKPCNT
x : (6g)
Then, by use of (4a), (6a) and (6e), becomes:

EavA u0;x C
1

2
q2

� �
C ðEaveKEm1hÞA 1C

bP cos q
�GA

� �

q;x ZNT
x KP;

(6h)

which, by use of (4g), results in:

u0;x Z
NT
x KP

EavA
K

1

2
q2; (6i)

which we can integrate over the length of the column

subject to the boundary conditions that the ends are

restrained in the axial direction, i.e. u0(0)Z0 and u0(L)Z0.

Therefore, we obtain the following

ðNT
x KPÞ

L

EavA
K

1

2

ðL
0
q2 dxZ 0; (6j)

which is applicable for the entire loading range of the

column and is a ‘constraint equation’ expressing the

condition that the overall change in displacement

between the end supports must be zero because the

two ends of the beam are immovable and there is a

support load P.

Now, the bending rigidity, (EI)eq of the column, is

likewise influenced by the non-uniform stiffness and is

defined by:

ðEIÞeq Z

ð
A

EðyÞðyKeÞ2 dA; (7a)

By use of (4a) this results in:

ðEIÞeq ZEm2IK
E2
m1h

2A

Eav

: (7b)

where Eav, Em1 and Em2 is defined in (4b)–(4d).

We will modify the beam equation to include the thermal

loading and moderately large deflections. Transverse shear

will also be included. In doing so, we shall properly modify

the equations developed in [12]. The moment including the

thermal effect is given by:

M ZKðEIÞeq
dq

dx
KMT

x : (7c)

From equilibrium, taking into account the (compressive)

reaction force, P, the moment at any position is given by

M ZPvCM0 CPe; (7d)

where M0 is the moment at xZ0.

Differentiating (7c) and (7d) with respect to x and using

(6b) and (6e) with the additional assumption that the shear

angle is small, so that sin geqxgeq and cos geqZ1, results

in:

ðEIÞeq
d2q

dx2
CP

bP

2A �G
sin 2qCsin q

� �
C

dMT
x

dx
Z 0: (7e)



Fig. 1. Definition of the geometry for a composite column under axial

compression and heat flux.
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At the ends (simple supports), we have the moment

boundary conditions of

KðEIÞeq
dq

dx
ð0ÞKMT

x ZPe; K ðEIÞeq
dq

dx
ðLÞKMT

x ZPe:

(7f)

2.1. Linear analysis

Taking into account the fact that the thermal moment,

MT
x , is independent of x, and linearizing, sin qxq, results in

the differential equation

ðEIÞeq
d2q

dx2
CP

bP

A �G
C1

� �
qZ 0: (8a)

with the boundary conditions (7f).

If we set

l2 Z
P

ðEIÞeq
C

bP2

ðEIÞeqA �G
; (8b)

then the solution is:

qðxÞZ
ðMT

x CPeÞ

lðEIÞeq

ð1Kcos lLÞ

sin lL
cos lxKsin lx

� �
: (8c)

Notice that the symmetry condition q(L/2)Z0 is satisfied

automatically in (8c).

And the constraint equation (6j), again linearizing,

cos qx1, becomes:

ðNT
x KPÞ

L

EavA
K

ðMT
x CPeÞ2

2½ðEIÞeql�
2

ð1Kcos lLÞ

sin lL

!
L

sin lL
K

1

l

� �
Z 0:

(8d)

The vertical deflection of the beam is obtained for the

linear problem by using (6b) and (6e) and integrating:

vðxÞZ 1C
bP
�GA

� �ðx
0
qðxÞ dx

Substituting (8c) gives:

vðxÞZ
ðMT

x CPeÞ

ðEIÞeql
2

1C
bP
�GA

� �
ð1Kcos lLÞ

sin lL
sin lx

�

Cðcos lxK1Þ

�
:

(8e)

Notice that from (8d), the deflections at the ends are zero

(as they should), v(0)Zv(L)Z0, and that the mid-point

deflection, v(L/2)Zvm, is:

vm Z
ðMT

x CPeÞ

ðEIÞeql
2

1C
bP
�GA

� �
1

cosðlL=2Þ
K1

� �
: (8f)

and tends to infinity for lLZp (the Euler load of the

column).
If the thermal loading is prescribed via the heat influx, Q,

then NT
x andMT

x can be determined and the only unknown in

Eq. (8e) is P (or l from (8b)). Then we can solve the

transcendental equation (8d) for P and thus obtain the

relationship between the heat loading Q and the transverse

deflection v. This relationship is obtained for constrained

beams only, which means the support force P is large

enough to prevent the beam from expanding along the axial

direction under the effects of the thermal force NT
x and the

thermal moment MT
x . In this case, P, which is obtained by

Eq. (8d), is the support reaction; if, on the other hand, the

‘constraint’ condition of immovable supports is released,

then P is the applied load and the relationship between the

mid-point deflection vm and PapplZP can be obtained from

Eq. (8f). Note also that for zero MT
x , the constraint equation

(8d) reduces to NT
x ZP, i.e. the solution for a uniformly

heated column.
2.2. Results and discussion

Let us consider a composite column made of E-

glass/vinyl-ester (Fig. 1). The thermal conductivity is

taken to be KZ0.50 W/m K and the thermal expansion

coefficient aZ18.0!10K6 (1/8C). The surface conductivity

from the composite surface to the air is taken to be



Fig. 3. Axial reaction force vs heat flux for a pinned beam with external heat

flux (immovable ends).

Fig. 2. Deformation of the beam with different surface temperature

(immovable ends).
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HZ6.0 W/m2 K. The room temperature modulus is E0Z
20.6 GPa and the shear modulus, G0Z2.1 GPa. Let us

assume a column of length, LZ2 m, thickness, hZ0.25 m

and width bZ0.5 m.

In Fig. 2 we show the deformation of the beam, which is

pinned at both ends (immovable) and subjected to an

external heat flux. It is obvious that the negative

deformation increases with the external heat flux Q

(negative values are towards the heat source), which

increased from 40 to 160 W/m2. Actually, the difference

of the deformation of the column between QZ120 and

160 W/m2 is very small; But for QZ200 W/m2, the

deformation decreases and is even smaller than the

deformation under QZ40 W/m2. The reason is that the

transverse deformation of the column is due to the bending

moments applied. There are two bending moments, one is
the thermal bending moment, as shown in Eq. (5d), the other

is the moment due to the eccentric loading, as shown in Eq.

(7d). Since the material properties degrade with tempera-

ture, the neutral axis of the column moves away from the

heat source, therefore the bending moment due to the

eccentric loading always makes the column bend away from

the heat source; but for the thermal moment, there are two

possibilities, one is to make the column bend towards the

heat source, anther is to make the column bend away from

the heat source, which depends on the variations of the

temperature and material properties. When the heat flux

increased from QZ40–160 W/m2, the deformation was

governed by the thermal loading, which increased with the

heat flux, so the deformation increased towards the heat

source with the heat flux Q; but as Q increased further, the

influence of the material properties degradation took effect

which lead to opposite transverse deformation (i.e. away

from the heat source). As a result, under the overall bending

moments, the deformation decreased.

The corresponding support force, Pcon can also be

calculated for a given external heat flux. Pcon is normalized

with the Euler critical load of the column for room

temperature, which is: PEulerZp2EI/L2. Fig. 3 shows the

support force,Pcon as a function of the heat flux,Q, from 10 to

200 W/m2. It can be seen thatPcon increaseswith the heat flux

when Q!180 W/m2. And as the heat flux increases further

and QO180 W/m2, the support force Pcon decreases. The

variation is non-linear which is due to thematerial properties,

which decrease with the larger heat flux non-linearly, as well

as due to the fact that the ends are restrained, therefore,

beyond a certain level of deformation, the structure starts to

‘pull’ from the ends rather than ‘push’ against the ends.

Based on the axial support force Pcon obtained, the mid-

point deflection vm is calculated, which is normalized by the

thickness of the column h. In Fig. 4, we show the absolute

value of mid-point deflection vm (negative values are

towards the heat source). It is clear that as Q%140 W/m2,



Fig. 4. Mid-point deflection vs heat flux for a pinned beam under with

external heat flux (immovable ends).
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vm increases with the larger heat flux almost linearly, which

means non-linearity of the material properties due to

temperature have little influence on the deflection of the

column; however, as QO140 W/m2, the mid-point trans-
Fig. 5. Axial applied force vs mid-point deflection for a pinned beam with

external heat flux (ends free to move axially).
verse deflection decreases since the influence of the

eccentrcity moment becomes significant and the overall

moment variation with the heat flux is highly non-linear.

There is another fact we should note: the normalized mid-

point transverse deflection is rather small, therefore the

linear analysis is reasonable.

Fig. 5 presents a plot of the axial support force P vs.

the mid-point deflection vm for various values of heat flux

Q. In each case, the mid-point deflection vm was

calculated from the linear analysis for the pinned beam

under the external heat flux and the end of the column is

free to move, so the constraint condition in Eq. (8d) is

removed. The solution of the problem is Eq. (8f) and the

variation between the axial force P and the mid-point

deflection vm can be obtained from Eq. (8e). The figure

shows that, for smaller heat fluxes Q, the axial force P

increases initially with only a small bending deflection.

But as P approaches the Euler load Pcr, which is obtained

for lLZp, the transverse deflection increases rapidly,

with P becoming asymptotic to Pcr. For the larger heat

flux values of Q, the load–deflection curve ‘bends over’

much earlier in the response, and the beam behaves much

like an ‘imperfect’ column. Eventually, in all cases, the

axial support force approaches Pcr as the mid-span

deflection becomes large. The temperature change through

the thickness has effectively an analogous role as that of

an imperfection on a mechanically loaded bar. That is,

both a temperature change difference through the thick-

ness and an initial imperfection would cause a moment

that bends the bar from the instant any load, whether

thermal or mechanical, is applied. One other observation

from Fig. 5 is that initially the deflections are negative, i.e.

the beam bends towards the heat source (e.g. fire) and

more so with the higher heat fluxes. But very quickly it

turns around and bends away from the heat source

(positive deflections), eventually reaching large values of

deflections away from the heat source as the applied load

approaches the Euler load.

A few final remarks. In this paper we have assumed a

simple (linear) temperature profile because the focus of the

paper is on providing a solution for the structural response

characteristics under combined compression and non-

uniform temperature, and not on the solution of the fire

equations, which has been successfully done by other

researchers [13]. Actually, if the heat flux from a fire is not

very severe (such as 1 or 2 kW/m2), the temperature profile

could be approximated by a linear steady-state one, as

assumed in this paper.

Furthermore, the solution methodology is actually given

for any temperature distribution and therefore the approach

does not rely on the linearity of temperature profile. We

made such a simple assumption just to show the mechanical

response under a non-uniform temperature distribution, and

because with this assumption some of the final expressions

turn out to be in closed form. In future work, we plan to use

the Laplace transformation method to solve for the transient
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temperature distribution under heat flux conditions, and,

furthermore, in an even more accurate approach, to use the

temperature profile provided by other researchers who have

already solved for the temperature distribution resulting

from fire [13], and then couple these more complex

temperature profiles with the present thermal buckling

analysis.

It should also be noted that resin decomposition can

certainly happen under a high intensity fire, which can be a

very important factor. But if the fire intensity is small, the

resin decomposition will not occur before the composite

beam collapses, which had been observed in our composite

column tests under combined loading. Recently, our

experiments on glass fiber-reinforced composite columns

under combined heat flux due to fire and compressive

loading show that the column failed due to the bending

moments which are induced by the non-uniform tempera-

ture distribution and the eccentric loading. A failed column

from our experiments is shown in Fig. 6. From the figure, we

can see that under the constant heat flux, 25 kW/m2, resin

decomposition is not apparent. The composite column failed

since the material properties degraded with the temperature

increasing and the structure collapsed due to the thermal

bending and the eccentric loading. All these influences,

which lead to failure of the column are considered in this

paper. In future work, the material decomposition and

charred layer formation will be considered as well. And in

these future studies with more complex temperature

profiles, the approach outlined in this paper can be used to

analyze the buckling response.
3. Conclusions

The thermal buckling of a composite column under

external heat flux and compressive load is investigated

based on a linear temperature distribution. We considered

two cases: one is a constrained pinned column (immov-

able ends) under an external heat flux and the other is the

same pinned column, but with the ends of the column free
to move axially and subjected to both an applied

compressive load and an external heat flux. For the

constrained column, the variations of the axial constraint

force Pcon and the mid-point transverse deflection vm with

the external heat fluxes are derived shown; for the

unconstrained column, the variation of the applied axial

forces P with the mid-point transverse deflection vm is

derived and shown. All parameters are normalized

appropriately. Based on the results obtained, several

conclusions can be made:
1.
 Due to the non-uniform temperature distribution, a

thermal moment is created.
2.
 Since the properties of polymers depend strongly on

the temperature, and especially on how close the

temperature is to the resin glass transition temperature,

the neutral axis moves away from the centroid of the

column cross-section which lead to an additional,

‘eccentric moment’, due to the eccentric loading.
3.
 The overall moment applied to the column comes from

(a) the thermal moment, the value and direction of

which depend on the temperature and material proper-

ties variation; in fact it would tend to bend the

structure away from the heat source for small

temperatures (small heat fluxes) but towards the heat

source for large temperatures and (b) the ‘eccentric

moment’, which always makes the column bend away

the heat source. Based on the present analysis, the

direction of bending for specific conditions of applied

heat flux and material properties can be predicted.
4.
 The column behaves much like an ‘imperfect’ column

and the deformation of the column strongly depends on

the thermal and eccentric moments. Actually, the

overall moment varies with the heat flux non-linearly.
5.
 For the composite column made of E-glass/vinyl-ester,

as an example, the transverse deflection is very small

compared with the thickness of the column, therefore

the linearization of the solution is reasonable.
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