Ini. J. Mech. Sct Vol 28, No. 9, pp. 391-998, 1966 0020- 140)/86  $3.00 4+ 00
Printed ia Orest Bridain. @ 1946 Pergamon Journals Lid

FULLY PLASTIC ASYMMETRIC CRACK GROWTH NEAR A
SINGLE SHEAR BAND

G. A. KARDOMATEAS®
Massachusetts Institute of Technology, Cambridge, MA 02139, US.A.

Abstract—An asymmetric configuration may arise if a crack is near a weld or shoulder. In this case, -
loading into the plastic range can give a single asymmetric shear band extending from the crack tip
instead of the two shear zones of the symmetric case. The resulting crack propagation near the active
slip band, into previously pre-strained material, may give less ductility than the typical symmetric case
where the crack advances into relatively unstrained materia! between the two shear zones. An
approximate solution for the growth of such asymmetric cracks in regions dominated by an HRR type
strain singularity is presented. The effect of strain hardening on crack growth is investigated and the
predicted growth rate is compared with test data on scveral alloys.

NOTATION

¢ crack advance distance
y; initiation displacement
u, far ficld displacement
F, hole growth ratio
J path independent (J) integral
k shear strength
MP Mode I mixity parameter
n strain-hardening exponent
W work per unit volume
strain components
y pnncipal shear strain
¢ critical fracture strain
n damage
6. shear band orientation
6, average crack growth angle
cracking angle
¢ current crack length
p mean inclusion spacing
stress componeats
o, flow stress at unit strain
¢ mean normal stress
t principal shear stress
o crack opening angle

INTRODUCTION

In symmetric singly grooved tensile specimens the crack advances into the relatively
undamaged region between two symmetric shear zones. In the fully plastic case, these zones
narrow into bands that traverse the section, see Refs [1, 2]. Consider now the plane strain,
singly grooved configuration of Fig. 1. The presence of a weld fillet or a harder. heat-affected
zone on one side of the crack suppresses one of the two slip bands that would appear in a
symmetrical specimen. This is likely to give asymmetric cracking near the remaining active
slip line, with less ductility because the crack is advancing into pre-strained and pre-damaged

FiG. 1. Symmetnx and asymmetrk shear band configurations.
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material. Another indication of the reduced ductility is the fracture forming a shear lip as
preliminary tensile tests have shown [3]. Near the tip of the growing crack, strain
hardening will cause the deformation field to fan out. To model the stress and strain around
the tip, one can use the dominant singularity solution for the mixed mode stationary crack
problem that was developed by Shih [4] by extending the HRR [1, 2] singularity for the
general mixed mode case. Microscopic observations have shown [3] that damage in these
specimens is caused by hole growth from inclusions. Thus, as for a fracture criterion, that of
McClintock et al. [5] will be used. The objective of this paper is to present a solution, based
on the integration of the mixed mode HRR fields, for the growth of cracks near a single shear
band.

ANALYSIS

Initiation

Consider a fracture running at an average angle 0, with the shear band, as shown in Fig. 2,
with a relative displacement u,at an angle 0, being imposed upon it by the far field conditions.
Assume that the fracture strain is large compared to the yield strain, so that fully plastic
conditions prevail. The fracture criterion is taken to be that the damage at some fracture
process distance p reaches a critical value of unity. The direction of the crack will be through
the point at which the least far-field displacement is required for unit damage. Assume that
the crack abruptly jumps to the damaged site, and that sliding off occurs by the amount of the
crack tip displacement required to attain the unit damage. The combination of cracking and
sliding off gives the two new surfaces of the macro fracture. The process is then repeated. For
a material law of the form:

g=20, E") (i)
where g, is the flow stress at unit strain and n is the strain-hardening exponent, the local stress

and strain fields, relative to the preceding crack direction 6, are given in terms of the J integral
and the Mode I mixity parameter as [4]:

oi;(r, 6.— 0, MP) J sy
= (B — MPp 2
o o1, (MP) 9:;(6c— 6, MP), @)
J litn+ 1) R
Eij(r’ 0C - 0[’ Mp) = (m) EU(BC— ef’ Mpr), (3)
ui J 1 (n+1) )
F (m) (6 — b, MP), )

where _is the unknown and temporarily assumed critical orientation for maximum damage.
The dimensionless functions 4;;, §;; and I(n, MP) have been numerically determined in [4] for
n = 1/3 and 1/13. The dimensionless functions &, can be derived by integrating the strain
functions [6]. The mixity parameter, MP, can also be determined if the relative flank-to-flank
displacement of the singular field and the far slip line are assumed to be in the same direction.
The path independent integral, J, can be evaluated in terms of the shear strength &, the far
field displacement u, and the shear band orientation 6. From its definition, for the crack

Fig. 2. Satistying a crack growth criterion at a provess radius g and a critical angle 6
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parallel to the x,-direction

8u,
J-IWdX;—T/a—x‘dS. (5)
where T is the traction vector and u, is the displacement vector on I, sis the arc lengthand W
is the work per unit volume. To obtain an expression for J, the simple formula from non-
hardening plasticity for the work per unit volume is used in terms of the shear strain, y,and the

shear strength k:
W = ky. (6)

If I"is chosen to be the outer boundary (Fig. 3), the tractions are zero everywhere except at the
grips, where the displacement is constant, so du; /dx, = 0. Thus, the only contribution in the J
integral comes from the first term. For a relative displacement u, across the shear band of
infinitesimal width ét:

=

Noticing that dx, = t/cos (0, — ) the following is obtained:
J = ku,/cos(6,—8)), (8)

where u_is the magnitude of the far field shear displacement and 6, is the direction of the far
field band. Assume cracking to the new site (p, 8,) followed by sliding off. When the process is
repeated as shown in Fig. 4, the upper surface consists entirely of ‘cracked’ material, whereas
the lower surface consists of a mixture of sheared off and cracked material. The angle of the

‘upper’ surface is
0,=6.. )
The angle of the ‘lower’ surface is found from
_, psinf_+ ussin 0,

= tan . 10
b pcos 6+ ug cos b, (10)

The average fracture direction is then
0,=(6,+6.)/2. (11)

The original assumption for the average fracture direction can now be checked and the entire
process repeated until convergence. One might guess, for example, initially 6, = 6_and 6, = 0.

/ /

T

Fic 3 Shear band parameters.
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Fii. 4. Upper and lower faces of fracture surface.

To solve for the initiation conditions, a fracture criterion is needed. The critical strain for
fracture can be calculated by using the fracture criterion of McClintock et al. [5] by whichitis
postulated that fracture due to micro-void coalescence occurs when the damage, n, reaches a
value of unity. The damage is expressed in terms of a hole growth ratio, F,, the principal shear
strain, y, and the triaxiglity, o/t

e r 9 (=
'I—InFl[ln\/l_-}-T+2(l_n)smh . ] (12)

where the triaxiality can be written in terms of the angular stress functions (being tabulated in

[4]) as:

0/t = (G, + Ogg)/ 21, (13)

S~ \N2T1.2
i:[&fﬁ(i"zﬂ)] . (14)

The damage was considered at points a distance p ahead of the crack tip and the critical
direction, 8, that requires the minimum far-field displacement for unit damage as well as the
critical fracture stain, 7, and initiation displacement, u;, was determined. For a shear band
orientation at §, = 45° and with ¢, /k = 3, mean inclusion spacing p = 10 ym, hole growth
factor F = 1.3, the above analysis was implemented for two strain-hardening exponents:
n=1/13and 1;3. Forn = 1/13. 1t resulted in an average crack growth direction of §; = 36.3°,
and an initiation displacement u, p = 0.714. For the case n = 1/3. the corresponding findings
were 6; = 36.0° and u;/p =0.758. We turn now to the problem of predicting the crack
growth.

with

Crack growth
Now the crack is growing steadily along the 6;-direction. Assume that the crack is currently
at the position ¢. At a position dc ahead of the crack the shear strain is:

cy
it (5_;) de

where the subscript ¢ refers to the current position of the crack. Notice that (¢; ér), is
negative since the strain decreases ahead of the crack. So for the crack 1o advance by dc. a

strain increment of
(’w.
—| =L} de
cr /.

must be applied which is made up by the displacement required for further growth by p.

1€
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The value of (dy/dr) is found by integrating the strain gradients produced by previous
displacements. It is convenient to usc the previous crack length ¢ as the variable of

integration:
AN "_7)+ 4 () (4] 4, (16)
or). \or), Jodu\ar) \ & '

where the subscript i refers to the value at crack initiation. From (3) and (8),

() (i)l
ar ). \eyl,.(MP)(c+p)cos(0,—0,) (n+1)(c+p)
An expression for the value of &, can be found by using (8) and settingr = pand y = y.in (3}
u.=°"w-‘M")PCOS(O.-"r)(&)“'. (8)
k ¥
In a similar way,
ljim+ 1) ford
L . ( aic? ) y (19)
Ou, a1, (MP)rcos(6,—8,) (n+1)u
and .
d L k 1/m+ 1) =~
LA o N - (20)
du \ or a1y, (MP)rcos(6.—80 ) (n+ 1) rug

Substituting in equation (16) and using (15), (17), (19) and (20) the following equation for the
displacement rate function du] /" '/dc is obtained:

du:/h\—l!: p 1/(m+1) uil/(n?l)
dc c+p (n+1)(c+p)

C p 1,(n+1) 1 &ul/(u*'l)
+ - i dé.
o\c+p—¢ (n+1)(c+p=-¢&) &
(21)

Rename the vaniables by normalizing with respect to the mean inclusion spacing p,
C=c/p, =Z=¢ip, U=u/p.
and the following Volterra integral equation of the second kind is obtained:

dUl tn—=1) 1 1.im—1) L.'_l n=1)
ac =(C+l) (n+ 1) (C+1)

C 1 1:(a+ 1) 1 (:L'l.(nvl)
- d=. 2
+,L (C+1—E) M+ D(C+I-5) &= =2}

This integral equation can be solved numerically for dU! "~ ' dC and the displacement is
then found from

e LR
L'lC)=[Ui’ sy odut ‘""',dE)dE} . (23)
Jo
Calling the rate function dU' **~ ', dC constant provides a lower bound solution of:
dut et dC=U'""" (n+ INCH . (24)
which integrates to:
In(C !
L':Ui[ ot +”+1T . (25)
n+1
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RESULTS AND DISCUSSION

The numerica!l solution of the sbove integral equation (22) was performed via the
Runge-Kutta method. Figure § shows how the displacement u, increases with crack growth
for the two strain-hardening exponents that have been considered here. The crack growth
rate dC/dU vs crack advance C is shown in Fig. 6. After growth by C = c/p = 400, the lower
hardening n = 1/13 case shows an 81 % bigger growth rate than the high hardening n = 1/3
case. The expression (25) shows the same dependence on strain hardening but can only be
used to give an upper bound to the growth rate.

The increasing crack growth per unit displacement (associated with the strain distribution
flattening out in front of the crack at a decreasing rate) leads to size effects which can be
estimated from the curves in Fig. 6. It can be observed, for example, that the crack growth per
unit displacement after growth by c¢/p = 400 is 609, bigger than after growth by c/p
= 100 for n = 1/13 but only 31 % bigger for n = 1/3. The increasingly higher crack growth
rate with less hardening is the cause of the loss of stability that had been observed in
preliminary experiments [3] (the latter also depends on the compliance of the surrounding
structure).

The fracture geometry in these asymmetric cracks can provide a relation between the more
commonly used crack opening angle, , and the crack advance per unit far field displacement,
dC/dU. In terms of the axial displacement u, = u, sin 6, (Fig. 7)

w = du, cos 8;/dc = sin 6, cos ,/(dC/dU). (26)

The higher growth rate in the low hardening case corresponds thus to a smaller crack opening
angle.

Finally, the results can be compared with the quasi-steady solution for the low hardening
case [7] which gave a growth rate 359 less than the more exact solution presented here. A
normalized measure of the deviation from the steady state is given by:

. cd?u/dc?

= 27
“= "dude ok

For the cases considered, this parameter is practically constant during crack growth,
ur= —027forn=1/13andu?= —0.18 forn = 1/3, reflecting a more steady growth for the
higher hardening case.
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F1G. 6. Crack growth rate dC/dU vs crack growth C = ¢/p.

du, cos 6,
dc

dua 0!

FiG. 7. Denving the relation between the crack opening angle and the crack growth rate.

EXPERIMENTAL OBSERVATIONS

Tests were performed on fatigue-pre-cracked asymmetric specimens [3] (asymmetry
provided through a machined shoulder) of the lower hardening HY80 and HY 100 steel
(n =~ 0.10) and the higher hardening A36 hot rolled and 1018 normalized steel (n ~ 0.24).
In these tests. in addition to the load-displacement data. the topographies of the crack
path were plotted using a travelling stage microscope. These fracture surface profiles allow
determining the initiation and growth displacements. the crack orientation 6; and the crack
opening angle w.

Results from these tests are summarized in Table 1. Crack growth orientations were found
within 2° of 38° from the transverse. The smaller than 45° angle was expected from the higher
triaxiality [4]. The initiation displacement is one order of magnitude bigger than the
predicted one (order of inclusion spacing p) due to the presence of blunting. Blunting is
expected to aflect the local field at initiation by raising the strains but limiting the traxiality
[8]. During growth, however. the fracture surface profiles show a clearly defined crack
opening angle [3].

Concerning now the experimentally measured crack growth rate and crack opening angle,
a good agreement was achieved with the predicted ones [for the specimen ligament of
C=c¢p=20.dC,dU =101 for n = 113 and dC dU = 6.0 for n = 1 3 from Fig. 6: the
crack opening angle of 3.2 and 357 respectively. s found by using equation (26)].
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TasLr 1. TesST DATA

Alloy Experimental Predicted

Low hardening (n x 0.10) ne= /13
HY 80 HY 100

ulp 18 13 0.714

o, 40" 40" 36.3"

(de/du),,, 104 9.5 101

w 2.1¢ 24 32
High hardening (n x 0.24) n=1/3

A36 HR 1018 norm.

ulp 27 38 0.758

0, 38" 38" 360°

(dc/du),, 5.5 46 6.0

w 5.0° 6.0° 5.5

Furthermore, it should be noted that the asymmetric specimens are less ductile than the
corresponding symmetric ones [3] (crack growth rate larger by a factor ranging from 1.2 to 3,
the higher growth rate with less hardening). In this paper, however, the attention is focused on
predicting the growth of the asymmetric cracks.

CONCLUSIONS

A solution based on the integration of the stationary mixed mode crack tip singularities
was presented for the growth of fully plastic asymmetric cracks near a single shear band.
Assuming that near tip fields follow a power law asymptotic behavior, gives the crack growth
rate as a solution of an integral equation. The analysis provides also the direction of the
growing crack and the initiation displacement. Two strain-hardening exponents, n = 1/13
and 1/3, were considered. A higher growth rate (and smaller crack opening angle) is predicted
for less hardening. The crack growth per unit displacement increases as the crack advances,
the increase being steepest for a lower strain hardening. The increasingly higher growth rate
of such asymmetric cracks in the lower hardening alloys leads to increased stiffness
requirements for stable fracture. The results of the analysis appear plausible when compared
to test data on several alloys.
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