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The Mode III Interface Crack in
Piezo-Electro-Magneto-Elastic
Dissimilar Bimaterials
The mode III interface crack problem is investigated for dissimilar piezo-electro-
magneto-elastic bimaterial media, taking the electro-magnetic field inside the crack into
account. Closed form solutions are derived for impermeable and permeable cracks. The
conventional singularity of r−1/2 is found for the fields at the distance r ahead of the
interface crack tip. Expressions for extended crack tip stress fields and crack opening
displacements (ECODs) are derived explicitly, and so are some fracture parameters, such
as extended stress intensity factors (ESIFs) and energy release rate (G) for dissimilar
bimaterials. An approach called the “energy method,” finding the stationary point of the
saddle surface of energy release rate with respect to the electro-magnetic field inside the
crack, is proposed. By this method, the components of the induced electro-magnetic field
inside the crack are determined, and the results are in exact agreement with those in the
literature if the two constituents of the bimaterial media are identical. The effects from
mechanical and electro-magnetic property mismatches, such as differences in the stiff-
ness, electric permittivity and magnetic permeability, between the two constituents of the
bimedia on the mode III interface crack propagation are illustrated by numerical simu-
lations. The results show that the applied electric and magnetic loading usually retard the
growth of the interface crack and the directions of the combined mechanical, electric, and
magnetic loading have a significant influence on the mode III interface crack
propagation. �DOI: 10.1115/1.2073328�
1 Introduction

One class of contemporary materials, widely used in engineer-
ing in devices �in sensor, transducer, actuator components, etc.�,
are the piezoelectric and piezomagnetic composite materials. Due
to their exceptional functions, such as flat frequency response
�1–4� and transformation of energy from one form to the other
�mechanical, electric, and magnetic energy, or thermal energy�
�5,6�, this type of composite exhibiting piezoelectric and piezo-
magnetic properties has found increasing applications in micro-
wave electronic, optoelectronic, and electronic instruments. Like
in conventional composites, defects or flaws may usually be in-
troduced during the manufacturing process or during service by
impact loading. These defects would often deteriorate the perfor-
mance of the devices being made of piezo-electro-magneto-elastic
media.

Recently, more and more attention has been directed towards
the problems of cracks in the electro-magneto-elastic solids
�7–12�. Dissimilar bimaterials or layered composites are often in-
corporated into a variety of components, such as smart structure
sensors, actuators, and broadband magnetic probes. Having been
recognized as one of the common failure modes of general dis-
similar bimaterial media, the interface cracks could also be devel-
oped in the piezo-electro-magneto-elastic structures and thus af-
fect the features of the electro-magneto-elastic apparatus. Though
these interface cracks may severely diminish the performance of
this type of structure, one may see that little attention has been
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given to the study of the magneto-electric coupling effects on the
interface crack propagation behavior in piezo-electro-magneto-
elastic bimaterials.

The magneto-electric coupling effect of piezoelectric and piezo-
magnetic fields usually has a significant influence on the behavior
of piezo-electro-magneto-elastic bimaterials or layered structures
�3,4,13�. This coupling among the magnetic, electric, and elastic
fields is also expected to have an influence on the propagation
behavior of interface crack/delaminations when piezoelectric, pi-
ezomagnetic, and magneto-electric effects, or any two of these
effects, are present simultaneously �1�. These coupling effects
usually complicate this interface crack problem. In order to get
insight into the interface crack problems of dissimilar piezo-
electro-magneto-elastic bimaterial composites, the mode III inter-
face crack is investigated in this paper by using Stroh’s formulism
�14� and the complex variable method. Two types of mode III
interface cracks are analyzed. One is called permeable interface
crack for which the magneto-electric field inside the interface
crack is considered. The other type is called impermeable.

This paper is organized as follows: �1� In Sec. 2 is a summary
of some basic equations for piezo-electro-magneto-elasticity in
Strohs formalism. �2� A compact form solution to the interface
crack is formulated in Sec. 3. The expressions for the ECOD,
ESIF, and the energy release rate are derived in closed form. The
“energy method” is also proposed in this section and used to ob-
tain the solution to the magneto-elastic field inside the interface
crack. One may interestedly find that this method could be ex-
tended to more complicated problems in piezo-electro-magnetic
elastic solids. �3� The numerical results in Sec. 4 show the influ-
ence of the property mismatches between the two constituents on
the interface crack propagation. An interesting result one may find
is that the applied external electric-magnetic field may slow the
growth of mode III interface cracks in piezo-electro-magneto-
elastic bimaterial solids. Since all the formulas in this paper are
obtained in explicit expressions, and are thus easily trackable, this
study may serve as a benchmark for further investigations in

piezo-electro-magneto-elastic media
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2 Basic Equations
In a fixed Cartesian coordinate system �x1 ,x2 ,x3�, the general-

ized Hookes law for an elastic material with both piezoelectric
and piezomagnetic fields is of the following form �1�:

�ij = cijkluk,l + elij�,l
E + �lij�,l

H,

Di = eikluk,l − �il�,l
E − �il�,l

H, �1�

Bi = �ikluk,l − �li�,l
E − �il�,l

H

where i , j ,k , l range in �1, 2, 3� and the repeated indices imply
summation, the comma stands for differentiation with respect to
corresponding coordinate variables; �ij is the elastic stress, uk is
the elastic displacement, and cijkl is the elastic moduli tensor; Di is
the electric displacement, �E is the electrostatic potential, and �il
is the electric permittivity; Bi is the magnetic induction �magnetic
fluxes�, �H is the magnetic scalar potential, and �il the magnetic
permeability; eikl , �ikl, and �li are the piezoelectric, piezomag-
netic, and magnetoelectric coefficients, respectively. For the ma-
terial constants, the following relationships hold:

cijkl = cjikl = cijlk = cklij, eikl = eilk, �ikl = �ilk,
�2�

�il = �li, �il = �li, �il = �li

The equilibrium equations in the absence of body forces read

�ij,j = 0, Di,i = 0, Bi,i = 0 �3�

For two-dimensional antiplane deformation of a transversely iso-
tropic solid, we have

u1 = 0, u2 = 0, u3 = u3�x1,x2� ,
�4�

�E = �E�x1,x2�, �H = �H�x1,x2�

One may define the extended displacement as

u = �u3,�E,�H�T �5�

For a plane system, a nontrivial solution to Eq. �3� may then take
the following form:

u = A f�z�� + Ā f̄�z̄��, � = B f�z�� + B̄ f̄�z̄��, z� = x1 + p�x2

�6�

where � is the stress function vector and f�z�� are functions to be
determined by boundary conditions.

If one defines the extended stress fields as

t = ��32,D2,B2�T, s = ��31,D1,B1�T �7�

then these stresses can be written in terms of the stress functions
as

s = �−
��i

�x2
�T

, t = � ��i

�x1
�T

= �� �8�

Substituting Eq. �6� back into the equation �3�, one readily obtains

A = I = diag�1,1,1�, B = i	 c44 e15 �15

e15 − �11 − �11

�15 − �11 − �11

, p� = i �9�

where i2=−1.
If we define a matrix M as

M = iAB−1, �10�
then
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M = 	 �11�11 − �11
2 e15�11 − �11�15 �11�15 − �11e15

e15�11 − �11�15 − �15
2 − c44�11 c44�11 + e15�15

�11�15 − �11e15 c44�11 + e15�15 − e15
2 − c44�11

2 
��

�11�

where

� = c44�11�11 + e15
2 �11 + �11�15

2 − 2�11e15�15 − c44�11
2 �12�

The matrix M is real and symmetric.

3 A Solution to Mode III Interface Crack
Let the medium “I” occupy the upper half-space �donated by L�

and medium “II” be in the lower half-space �donated by R� �Fig.
1�. Then from Eqs. �6� and �9�, one has the following expression
for this bimedia:

uI = �I�z� + �̄I�z̄�, �I = BI�I�z� + B̄I�̄I�z̄� �13�

where, uI ,�I are displacement and stress functions for z�L, and

uII = �II�z� + �̄II�z̄�, �II = BII�II�z� + B̄II�̄II�z̄� �14�

where uII ,�II are displacement and stress functions for z�R.
For convenience, the symbols “I” and “II,” denoting the quan-

tities for medium “L” and “R,” respectively, may be put as sub-
scripts or subscripts.

Let the interface crack be located in the region a	x1	b ,−

	x3	
 of the plane x2=0. The p0


= ��i2

 �T= ��32


 ,D2

 ,B2


�T is ap-
plied at infinity �Fig. 1�. Inside the crack often is air or vacuum,
and the electro-magnetic field usually is considered constant under
uniform remote applied load �11,12, etc.�. These unknown com-
ponents for the electro-magnetic field are denoted as D�

0 , B�
0 , E�

0 ,
and H�

0 , which, respectively, observe the relationships

E�
0 =

D�
0

�0
, H�

0 =
B�

0

�0
, � = �1,2� �15�

Employing the superposition principle leads the original bound-

Fig. 1 An interface crack between dissimilar anisotropic
bimedia
ary value problem to an equivalent problem with the loading
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p0 = ��32

 ,�D2

0,�B2
0�T �16�

being applied on the two surfaces of the interface crack, where, in
Eq. �16�,

�D2
0 = D2


 − D2
0, �B2

0 = B2

 − B2

0. �17�

The displacement continuity along the bonded interface gives

�I+�x1� + �̄I−�x1� = �II−�x1� + �̄II+�x1�
or

�I+�x1� − �̄II+�x1� = �II−�x1� − �̄I−�x1� �18�
A function can be defined being analytical on the whole plane,

except the cut along the interface crack, as follows:

��z� =��I�z� − �̄II�z� , z � L

�II�z� − �̄I�z� , z � R
 �19�

Then, this function automatically satisfies the condition �18�.
Here, a convention

��z� = �±�x1�, x2 → 0± �20�

is employed and will be used in the following sections.
Differentiation of Eq. �19� with respect to z yields

���z� =��I��z� − �̄II� �z� , z � L

�II� �z� − �̄I��z� , z � R
 �21�

The stress continuity on the bonded interface leads to

BI�I+� �x1� + B̄I�̄I−� �x1� = BII�II−� �x1� + B̄II�̄II+� �x1� �22�

Similarly, we can define a function, which automatically satisfies
the condition �22� and is analytical on the whole plane except the
cut along the interface crack, as

��z� =�BI�I��z� − B̄II�̄II� �z� z � L

BII�II� �z� − B̄I�̄I��z� , z � R
 �23�

From Eqs. �21� and �23�, we obtain

BI�I��z� = N�i ���z� + M̄II��z�� , �24a�

B̄II�̄II� �z� = BI�I��z� − ��z�, z � L; �24b�

and

BII�II� �z� = N̄�i ���z� + M̄I��z�� , �25a�

B̄I�̄I��z� = BII�II� �z� − ��z� z � R �25b�
In the above equations, the following matrix was used:

N−1 = MI + M̄II = MI + MII �26�

Since MI and MII are real symmetric, so is N. Furthermore, define

H = MI + MII �27�
Therefore, the boundary traction conditions along the interface

crack surface give

BI�I+� �x1� + BII�II−� �x1� − �−�x1� = − p0�x1� , �28a�
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BII�II−� �x1� + BI�I+� �x1� − �+�x1� = − p0�x1� �28b�
Subtraction of Eq. �28b� from �28a�� yields

�+�x1� − �−�x1� = 0 �29�

which implies that the ��z� is continuous on the whole interface.
By the analytical continuation principle �15�, the function ��z�

is analytical on the whole plane. But according to Liouville’s
theorem �15�, this ��z� must be a constant function in the whole
domain. However, the condition that this function should vanish at
infinity means this constant function must be identically zero in
the whole plane, i.e.,

��z� = 0, for all z �30�
Either Eq. �28a� or �28b� leads to a general Hilbert equation in

matrix notation:

�+��x1� + �−��x1� = i Hp0�x1�, a 	 x1 	 b �31�
The homogenous equation corresponding to the general Hilbert

equation �31� can be written as

X+�x1� + X−�x1� = 0, a 	 x1 	 b �32�
where

X�z� =
1

��z − a��z − b�
diag�1,1,1� �33�

A solution which vanishes at infinite could be �16�

���z� =
1

2i
X�z��

ab

�X�x1��+
−1H�i p0�x1��dx1

x1 − z
�34�

Specifically, for constant applied loading, one has �see the Ap-
pendix�

���z� = diag�1 −
z − �a + b�/2

��z − a��z − b�
�H

2
�ip0� �35�

Integrating Eq. �35� results in

��z� = diag�z − ��z − a��z − b��
H

2
�ip0� �36�

where the constant contributing rigid body motion is omitted.
Next, let us consider some fracture characterizing parameters

such as the crack tip field intensity factors, extended displacement
discontinuities near the crack tips, and the energy release rate.

From the equations �24a� and �25b�, the extended traction along
the interface could be expressed as

t�x1� = N i�+�x1� + N̄ i�−�x1� = H−1�i �+�x1� + i �−�x1��
�37�

We shall show that the right-hand side of Eq. �37� is real, as
required.

Substituting the stress function �34� to traction expression �37�
leads to

t�x1� = − p + �X+�x1� + X−�x1���x1 −
a + b

2
�p0/2 �38�

When Eq. �32� is employed, the traction along the interface

reads:
t�x1� = �− p0 + ��x1 − a��x1 − b��−1/2diag�x1 −
a + b

2
�p0, x1 	 a and b 	 x1

− p0, a 	 x1 	 b
� �39�
Transactions of the ASME



which is a real vector as expected.
Then the extended tractions at a distance “r” ahead of the crack

tip such as “b” �Fig. 1� can be expressed in the form of

t�r� = �2 r�−1/2��b − a�
2

p0 = �2 r�−1/2�K�,KD,KB�T

�40�

where K’s are real numbers and defined as

K� =��b − a�
2

�32

 , KD =��b − a�

2
�D2

0,

KB =��b − a�
2

�B2
0 �41�

These K’s may be called the extended stress intensity factors
�ESIFs�. If we let

K = �K�,KD,KB�T �42�

then the expression �42� becomes

K =��b − a�
2

p0 �43�

with p0 defined in �16�.
One may also extend the conventional crack open displacement

�COD� to piezo-magneto-electric materials. From Eqs. �13�, �14�,
and �19�, this extended crack open displacement �ECOD� may
readily be evaluated by

�u�x1� = u+
I �x1� − u−

II�x1� = �+�x1� − �−�x1�

= ���x1 − a��b − x1��1/2H p0, a 	 x1 	 b

0, x1 	 a or b 	 x1;
 �44�

Then the ECOD at a small distance “r” behind the tip of the
interface crack may read

�u�r� =� r

2
H�2K� �45�

also an expected real vector.
Now, the energy release rate, G, can be computed and it reads

G =
1

2
lim

�→0+

1

�
�

0

�

t�r�T�u�� − r�dr =
1

2
KTHK �46�

One may realize that all the expressions derived so far include
the unknown components D2

0 and B2
0 of the electro-magnetic field

inside the crack. There are two approaches to determine these
unknowns. The first method views the crack as a degenerated
hole, using the continuous conditions on the hole surface to deter-
mine the electric-magnetic fields. This method may work well for
monolithic material as shown in literature such as in �12�, because
of the convenient affine mapping function. But it is hard to extend
this method derived for monolithic materials to the bimaterial me-
dia because of the differences in the material properties between
the two constituents of a bimaterial system. To offset this diffi-
culty, here, another approach, called the “energy method,” is pro-
posed. As one may know, when a remote load starts to apply, an
electric-magnetic field begins to build up inside the interface
crack. This newly built field causes reactions to fields induced by
the applied loading inside the whole material system. One may
see that the energy release rate, G, is a saddle surface with respect
to variables, D2

0 and B2
0, the electric-magnetic field inside the in-

terface crack. This means for each value of G, there exist many
corresponding sets of D2

0 and B2
0 except at the stationary point, in

which only a unique D2
0 and B2

0 corresponds to a unique value of

G.
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Therefore, the value of D2
0 and B2

0 at the stationary point could
be the final competition result of the above-mentioned interaction.
Then one would have following equations:

�G

�D2
0 = H12�32


 + H22�D2
0 + H32�B2

0 = 0, �47a�

�G

�B2
0 = H13�32


 + H23�D2
0 + H33�B2

0 = 0 �47b�

which leads to

D2
0 = D2


 − �D2
0 = D2


 − �H23H31 − H21H33�/�H22H33 − H23
2 ��32


 ,

B2
0 = B2


 − �B2
0 = B2


 − �H21H32 − H22H31�/�H22H33 − H23
2 ��32




�48�

where Hij �i , j=1,2 ,3� are elements of the bimaterial matrix H
defined in �27�. The result of �48� can be shown the same as those
in literature if the two media of this current bimaterial are identi-
cal. This agreement justifies the above energy method. From the
result in �48�, one may see that the electric-magnetic field inside
the interface crack is a function of the bimaterial property under
given remote applied loading.

One may also observe from �47a� that if one wants D2
0→0

without magnetic field, then H22 needs to approach a very big
value. This is called electrically impermeable. The parameter �e,
introduced by McMeeking �17�, is used to characterize the electric
permeability. A similar parameter, �m, could be defined from the
observation made on �47b�, in which if B2

0→0 without electric
field, then H33 has to approach a very big value, a phenomenon
called magnetically impermeable. These two parameters �e and
�m have the relationship of �m /�e= ��0 /�0� / �H22/H33�.

Therefore, for an impermeable interface crack, D2
0=B2

0=0 and
the ESIF can be expressed as

K =��b − a�
2

��32

 ,D2


,B2

�T �49�

The energy release rate for this interface crack reads

Gimp =
1

4
KTHK =

�b − a�
8

�H11��32

 �2 + H22�D2


�2 + H33�B2

�2

+ 2H21�32

 D2


 + 2H31�32

 B2


 + 2H32D2

B2


� �50�

For a permeable interface crack, �e=�m=0, the D2
0 and B2

0 are
given by Eq. �48�, and the ESIF can be expressed as

K =��b − a�
2

��32

 ,�D2

0,�B2
0�T �51�

The corresponding energy release rate reads

Gperm =
�b − a�

8

det�H�

det�Ĥ�
��32


 �2 �52�

where the matrix Ĥ, a principal submatrix of H, is

Ĥ = �H22 H23

H23 H33
� �53�

and det� � is the determinant of a square matrix.
One interesting observation from Eq. �52� is that, though the

energy release rate, G, is independent of the applied electric-
magnetic load, it is affected by electric-magnetic properties of the
two constituents of the bimaterial media.

4 Numerical Results
In this section, the influence of the material property mis-

matches between the two constituents of the bimedia and the ef-

fects from magneto-electric coupling on the interface crack

MARCH 2006, Vol. 73 / 223



growth behavior will be demonstrated by some numerical results.
The basic data for the material properties selected here are similar
to those in �6�. These constants read as c44

I =43.7 GPa; e15
I

=8.12 C /m2; �11
I =7.86�10−9 C/Vm; �11

I =0.0; �15
I

=165.0 N/Am; �11
I =180.5�10−6 Ns2/C2, for the upper medium

�medium “I”�; and c44
II =44.6 GPa; e15

II =3.48 C/m2; �11
II =3.42

�10−9 C/Vm; �11
II =0.0; �15

II =385.0 N/Am; �11
II =414.5

�10−6 Ns2/C2, for the lower medium �medium “II”�.
Figures 2 and 3 present the influences of the bimaterial property

mismatches c44
II /c44

I ,�11
II /�11

I , and �11
II /�11

I on �D2
0 and

�B2
0, which relate to the magneto-electric field, D2

0 and B2
0, inside

the interface crack by Eq. �17�. One may easily see from Fig. 2
that the electric displacement �D2

0 decreases as the degree of an-
isotropy of these two constituents of the bimedia, defined by
c44

II /c44
I , increases, while it increases as the electric permittivity

ratio, �11
II /�11

I , increases. But it practically does not change as the
magnetic permeability ratio, �11

II /�11
I , increases. The magnetic

induction field �B2
0 decreases as cII /cI and �11

II /�11
I increase,

while it increase as �11
II /�11

I increases, as shown in Fig. 3. One can

Fig. 2 �D2
0 versus the bimaterial properties

0
Fig. 3 �B2 versus the bimaterial properties
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also see the �D2
0 and �B2

0 do not vary with the increase of

c44
II /c44

I ,�11
II /�11

I , and �11
II /�11

I after they reach some value.
Figure 4 shows the influence on the energy release rate, G, of

the mismatch of the degree of anisotropy for the bimaterial media
under pure mechanical tension. The G decreases as the c44

II /c44
I

increase, both for permeable and impermeable interface cracks. It
can also be seen that when c44

II /c44
I reaches some value �around

12.5 for this bimedia�, the G almost does not vary with the in-
crease in the mismatch on c44 between the two constituents of the
bimaterial media. Another interesting result observed from this
figure is that for a given �23, Gperm is larger than Gimp. This
observation shows that the electric-magnetic field inside the inter-
face crack may have an interaction with the stress field inside the
bimaterial system, thus it has an influence on the propagation
behavior of the interface crack. This observation may also suggest
that the design of a piezo-electro-magneto-elastic bimaterial sys-
tem based on a permeable assumption is more conservative than
based on impermeable assumption.

Figures 5–7 show the influences on G from the directions of
applied D2


 and B2

, respectively. Figure 5 shows the results for

loading D2

 and �32, Fig. 6 for B2


 and �32, while Fig. 7 is for
combined loading D2


 , B2

, and �32. In these figures, a negative G

can be observed under certain mechanically applied load, namely
�32

rtd, for a given D2

 and/or B2


. These negative values on G may
suggest that the applied electric-magnetic loading would retard the
propagation of an interface crack in piezo-electro-magnetic bima-
terials, a result which was also found in Ref. �12� for cracks in
monolithic piezo-electro-magnetic materials. The �32

rtd varies as
the direction of D2


 or B2

 revises. One can also observe that there

exists a direction in which the combined loading applied would
make �32

rtd reach its maximum and minimum value.
Figures 8 and 9 more clearly show the retarding effects, respec-

tively, of �11
II /�11

I and �11
II /�11

I on the energy release rate G under
pure loading D2


 or B2

. In these two pictures, the value of G is

always negative since the applied mechanical loading �32 is zero.
The G increases as �11

II /�11
I or �11

II /�11
I increases, a result consist

with the observation in Figs. 11 and 12.
Plotted in Figs. 10–12 are, correspondingly, the influences of

c44
II /c44

I , �11
II /�11

I , and �11
II /�11

I on the energy release rate, G, under
combined electric, magnetic, and mechanical loading for an im-

Fig. 4 Energy release rate, G, versus the stiffness ratio
c44

II /c44
I , for an interface crack under pure mechanical loading
permeable interface crack. The plotting in solid line is for the
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positive direction in D2

 and B2


, the dashed line is for revised
direction in D2


 and B2

. The G decreases as the c44

II /c44
I increases

and keeps almost unchanged when c44
II /c44

I reaches a certain value
for both applied loading directions, as shown in Fig. 10. On the
contrary, the G increases as the �11

II /�11
I and �11

II /�11
I increase,

respectively. The observations in these figures may suggest that a
reasonable selection in the mechanical and electric-magnetic
properties for the two constituents of a bimaterial media may
lower the energy release rate, making this bimedia much safer
with regard to propagation of cracks.

Finally, it should be mentioned that the important contribution
of our paper is the novel procedure, which has been developed to
solve for the electric-magnetic fields inside an interface crack in a
general bimaterial. The exact agreement of the results from this
method with the results from the mapping method for the special
case of homogeneous material �i.e., no bimaterial� in the litera-
ture, which, again, is the only case solved in the literature, pro-
vides validity for our “energy method” approach. It should be

Fig. 5 The effect of the direction of the applied D2 on the en-
ergy release rate, G, for an impermeable interface crack

Fig. 6 The effect of the direction of the applied B2 on the en-

ergy release rate, G, for an impermeable interface crack
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noted at this point that the contribution of the electric-magnetic
fields inside a crack is very important for the devices being made
of piezo-magneto-electro-elastic materials, since these fields may
interfere with the desirable signals of electric-magnetic fields, like
in broadband detecting devices. The results of our study could
offer tentative guidelines for the damage-tolerant design of the
devices.

5 Conclusions
In the present paper, the mode III interface crack in dissimilar

piezo-magneto-electro-elastic bimaterial media is investigated in
Stroh’s formulism. In this study, the electric-magnetic field inside
the interface crack is also considered and an “energy method” is
proposed for obtaining the solution to this electric-magnetic field.
Two types of interface cracks, namely permeable and imperme-
able cracks, are addressed. All the solutions are derived in closed
form. The following conclusions can be reached from the results
in this study:

1. The “energy method” is a very effective way to derive a
solution to the electric-magnetic field inside a crack, thus

Fig. 7 The effect of the directions of the combined applied B2
and D2 on the energy release rate, G, for an impermeable inter-
face crack

Fig. 8 Energy release rate, G, versus the electric permittivity
ratio, �11

II /�11
I , for an impermeable interface crack under pure D0

�

loading
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solving the whole interface crack problem when the electric-
magnetic field inside a crack is taken into account.

2. The mismatches of c44, �11, and �11 between the two con-
stituents of a bimaterial media have strong effects on the
potential propagation of a mode III interface crack. There
exists an optimal selection on c44, �11, and �11 that would
minimize the energy release rate for this mode III interface
crack.

3. The directions of the applied loading D2

 and B2


 also have
an effect on the possible growth of the interface crack in a
piezo-electro-magneto-elastic bimaterial media.

4. The applied electric and/or magnetic loading D2

 and B2




usually retard the propagation of the mode III interface
crack.
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Fig. 9 Energy release rate, G, versus the magnetic permeabil-
ity ratio, �11

II /�11
I , for an impermeable interface crack under

pure B0
� loading

Fig. 10 Energy release rate, G, versus the stiffness ratio,
c44

II /c44
I , for an impermeable interface crack under combined ap-
plied loading
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Appendix: Contour Integral for �„z…�
The method used here can be viewed as the generalization of

the technique in �16, 110, and 70� which is for a single equation.
Let � be a contour which includes the arc ab, and let this contour
shrink into the arc ab. Then for q�x1� constant

�
�

�X����−1N−1

� − z
d� =�

ab

�X+�x1��−1N−1

x1 − z
dt +�

ba

�X−�x1��−1N̄

x1 − z
dx1

=�
ab

�X+�x1��−1N−1

x1 − z
dx1 −�

ab

�X−�x1��−1N−1

x1 − z
dx1

�A1�
From Eq. �32�, one could have

X−�x1� = − N̄−1NX+�x1�, a 	 x1 	 b �A2�
Substituting Eq. �A2� into �A1� leads

Fig. 11 Energy release rate, G, versus the electric permittivity
ratio, �11

II /�11
I , for an impermeable interface crack under com-

bined applied loading

Fig. 12 Energy release rate, G, versus the magnetic perme-
ability ratio, �11

II /�11
I , for an impermeable interface crack under
combined applied loading
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�
�

�X����−1N−1

� − z
d� =�

ab

�X+�x1��−1N−1�I + N̄N−1�
x1 − z

dx1 �A3�

Then,

�
ab

�X+�x1��−1N−1

x1 − z
dx1 =�

�

�X����−1N−1�I + N̄N−1�−1

� − z
d�

=�
�

�X����−1�N + N̄�−1

� − z
d� �A4�

Since

N = N̄ = H−1 �A5�
then,

���z� =
1

2i
X�z��

ab

�X+�x1��−1N−1�ip�
x1 − z

dx1

= diag�1 −
z − �a + b�/2

��z − a��z − b�
�H

2
�ip� �A6�
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