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Vibration Characteristics of
Multiwalled Carbon Nanotubes
Embedded in Elastic Media by a
Nonlocal Elastic Shell Model
In this paper, the vibrational behavior of the multiwalled carbon nanotubes (MWCNTs)
embedded in elastic media is investigated by a nonlocal shell model. The nonlocal shell
model is formulated by considering the small length scales effects, the interaction of van
der Waals forces between two adjacent tubes and the reaction from the surrounding
media, and a set of governing equations of motion for the MWCNTs are accordingly
derived. In contrast to the beam models in the literature, which would only predict the
resonant frequencies of bending vibrational modes by taking the MWCNT as a whole
beam, the current shell model can find the resonant frequencies of three modes being
classified as radial, axial, and circumferential for each nanotube of a MWCNT. Big
influences from the small length scales and the van der Waals’ forces are observed.
Among these, noteworthy is the reduction in the radial frequencies due to the van der
Waals’ force interaction between two adjacent nanotubes. The numerical results also
show that when the spring constant k0 of the surrounding elastic medium reaches a
certain value, the lowest resonant frequency of the double walled carbon nanotube drops
dramatically. �DOI: 10.1115/1.2722305�

Keywords: vibration, multiwalled, carbon nanotubes, nonlocal shell, small length scale,
van der Waals, resonant frequencies
Introduction
Carbon nanotubes �1�, cylindrical-shaped tubes of seamless

raphite with extraordinary electrical and mechanical properties
2–8� potentially have remarkable applications for novel materials
r structures such as carbon-nanotube-reinforced composites
9,10� or as individual elements of nanometer-scale devices and
ensors �11–13�, and have attracted considerable attention world-
ide �14–22�. Usually, the properties of carbon nanotubes are

valuated via experiments �2,8� or atomistic and molecular dy-
amics simulations �14,15�. As has been pointed out in the litera-
ure, these experiments are extremely difficult to conduct and con-
rol and the molecular dynamics simulations are very time-
onsuming for large systems �16,17� because of the involvement
f internal nanolength scales. Therefore, many authors have made
reat efforts to extend the classical continuum mechanics to large-
ized atomistic systems. Such kind of models can yield reasonable
esults when the nanotubes are large enough to be viewed as a
omogenized material system �17,18�. However, the size of a
anotube is usually very small, maybe a few atoms in diameter,
ence it may not be viewed as a continuum medium. Therefore,
he small-scale may call the direct application of the classical
ontinuum mechanics model into question �17�. Having realized
he limitations of classical continuum models in the study of nano-
echnology, some researchers started to use a nonlocal elastic

odel in their studies �17,18,21,22�. This nonlocal elastic model
annot only include the merits of the classical continuum model
ut also take the internal small-length scale into account.

In the classical �local� theory of elasticity, the stress at a refer-
nce point x= �x1 ,x2 ,x3� can be uniquely determined by the strains
t that point. However, the nonlocal elasticity �23–25� postulates
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that the stress at a reference point x in a body not only depends on
the strains at x but also depends on the strains of all other points
x within the body considered. The stress-strain relations can be
written as �ij�x�=�v���x�−x� ,��cijkl�kl�x��dv�x��, where ���x�
−x� ,�� is the nonlocal moduli; �=e0a / l with a an internal charac-
teristic length �e.g., lattice parameter, granular distance�, l is an
external characteristic length �e.g., crack length, wavelength�, and
e0 is a constant appropriate to each material; cijkl is the elastic
moduli tensor. For two-dimensional nonlocal elasticity, there ex-
ists a differential form for the stress-strain relation,

�1 − �2l2�2��ij = cijkl�kl �1�

where the operator �2 is the Laplacian operator and has the form
��2 /x1

2�+ ��2 /x2
2� in a rectangular coordinate system. Notice that in

the nonlocal elasticity the effect of small length scale is consid-
ered by incorporating the internal parameter length into the con-
stitutive equation. One may also see that when the internal char-
acteristic length a is neglected, i.e., the particles of a medium are
considered to be continuously distributed, then �=0, and Eq. �1�
reduces to the constitutive equation of classical elasticity. Also, it
should be noted that, through Eq. �1�, the l is cancelled from the
rest of the analysis, leaving a and e0 as the internal characteristic
constants.

The vibration of nanotubes is a important subject in the study of
nanotechnology since it relates to the electronic and optical prop-
erties of MWCNT �26–28�. However, the models in the literature
to-date have been exclusively based on beam theory such as these
referring to thermal vibration and resonant frequencies
�2,8,19,28�. But the topological structure of a nanotube can be
viewed as a cylindrical shell, therefore when the multiwalled
nanotubes vibrate, not one but three resonant frequencies �radial,
axial, and circumferential� can be activated for each nanotube of
the multiwalled carbon-nanotube assembly. Since the nanotubes
of a MWCNT are coupled via the van der Waals’ forces, these

three resonant frequencies of each of the nanotubes may be dif-
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erent from the ones predicted based on isolated nanotubes. The
ifferences in resonant frequencies among the nanotubes of a
WCNT can further affect the electronic and optical properties of

he nanostructure. Therefore, the study of the vibration of the
WCNT from a shell-type topological viewpoint has technologi-

al significance and in the current research, the vibration of a
WCNT is analyzed by a nonlocal elastic shell model.
We note again that although the internal characteristic length, a,
ay be on the same scale order as the C–C bond length, this does

ot mean that the nonlocal elastic theory follows each atom. This
mportant internal characteristic parameter, a, enters into the con-
titutive relations to reflect the effects of the discrete character
23–25� of the nanostructures when extending the continuum
heory to deal with such materials. As has been shown in the
iterature, experimental and molecular-dynamics simulation meth-
ds are often used in most of the studies in understanding the
aterial properties and applications of carbon nanotubes. How-

ver, the experiments at the nano-scale are often hard to control
nd the simulations by molecular-dynamics are difficult to accu-
ately formulate and quite expensive for large-scale atomic sys-
ems. Therefore, researchers have attempted to expand the classi-
al continuum mechanics approach to the atomic or molecular-
ased discrete systems. The classical continuum models are
fficient and accurate in computation for a material system in
arge length scales. But the length scales at nanometers such as in
arbon nanotubes are not big enough to homogenize the discrete
tructure into a continuum. But by using the nonlocal theory, one
ould harvest the efficiency of classical continuum models and

ake the nanoscale effects into account at the same time, thus
btaining a satisfactory approximation �24,17,18�, etc. These are
he advantages of the current theory when comparing with mo-
ecular mechanics.

Therefore, in this paper, a nonlocal multiple shell model is de-
eloped to investigate the vibration characteristics of multiwalled
arbon nanotubes. In this model, not only the terms concerning
he van der Waals forces between adjacent nanotubes are incorpo-
ated into the Donnell shell model, but also the full nonlocal con-
titutive relationship is adopted in the derivation of the formulas.
herefore, this model includes both the interactions from the van
er Waals forces and the effects from the internal small scales of
he nanodevices. Compared with some nonlocal models in the
iterature for nanotubes subjected to mechanical loading, our

odel is a comprehensive nonlocal elastic model in the sense that
o approximation has been made in the use of the nonlocal elastic
onstitutive equations and each tube is treated as a shell, not as a
ne-dimensional column. The work presented in this paper is or-
anized as follows: in Sec. 2 we present the development of a
onlocal elastic shell model for the motion of multiwalled nano-
ubes; in Sec. 3 we present the analysis for the vibration of
WCNTs under simply-supported end boundary conditions and

he derivation of the characteristic equation for the natural fre-
uencies; in Sec. 4 we present numerical results and associated
iscussions on the vibration behavior of double-walled carbon
anotubes embedded in an elastic medium; finally, conclusions
re given in Sec. 5.

The Nonlocal Elastic Shell Model of Multiwalled
arbon Nanotubes
Let x, �, z be the axial, circumferential, and radial coordinates

f the nanotube �Fig. 1�, respectively. In terms of the the axial,
ircumferential, and radial displacements of mid-surface, u, v, w,
espectively, the strains and displacements of a nanotube have the
ollowing relations:

�xx = u,x − z�x ��� =
1

v,� +
w

− z��
R R
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�x�
=

1

R
u,� + v,x − 2z�x� �2�

where R is the mid-surface radius; �x, ��, and �x� are curvatures;
the comma denotes differentiation with respect to the correspond-
ing coordinates. We would like to emphasize that our work is a
shell theory and not a 3D elasticity solution. Therefore, although
three coordinates x, �, and z are involved in Eq. �2�, only two
variables x and � enter into the operators and the problem be-
comes a 2D problem. Similar handling of the z-direction effects
can be also found in Refs. �17,18�. Hence, this problem becomes
a 2D problem and the nonlocal theory is then applied onto this 2D
problem.

From Eq. �1�, the nonlocal stress-strain relations are written as

�1 − � 2l2�2��xx =
E

1 − �2 ��xx + ����� �3a�

�1 − � 2l2�2���� =
E

1 − �2 ���� + ��xx� �3b�

�1 − � 2l2�2��x� =
E

1 + �
�x� �3c�

in which �2= ��2 /�x2�+ �1/R2���2 /��2�, and E, �, are the elastic
modulus and Poisson’s ratio, respectively.

From Eqs. �2� and �3�, one can, respectively, write the resultant
forces

�1 − � 2l2�2�Nx = K�u,x +
�

R
v,�

− �
w

R
� �4a�

�1 − � 2l2�2�N� = K��u,x +
1

R
v,�

−
w

R
� �4b�

�1 − � 2l2�2�Nx� =
1 − �

2
K� 1

R
u,�

+ v,x� �4c�

and resultant moments,

�1 − � 2l2�2�Mx = D��x + ���� �5a�

2 2 2

Fig. 1 A shell model of multiwalled nanotubes in an elastic
medium
�1 − � l � �M� = D��� + ��x� �5b�
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�1 − � 2l2�2�Mx� = �1 − ��D�x� �5c�

here h is the thickness of the nanotube, K=Eh / �1−� 2�, and D
Eh3 /12�1−� 2�.
The governing equations in terms of resultant forces and mo-
ents may read as follows:

RNx,x + N�x,� − 	Rhü = 0 �6a�

N�,� + RN�x,x + Q� − 	Rhv̈ = 0 �6b�

RQx,x + Q�,� + N� + Rp�x,�� − 	Rhẅ = 0 �6c�

RMx,x + Mx�,� − RQx = 0 �6d�

RMx�,x − M�,� + RQ� = 0 �6e�
If the Donnell assumptions are adopted, then substitution of

qs. �4� and �5� into Eq. �6� leads to the following nonlocal elastic
hell model of a nanotube:

L1�u,v,w� = �1 − � 2l2�2�	̂ü �7a�

L2�u,v,w� = �1 − � 2l2�2�	̂v̈ �7b�

L3�u,v,w� = �1 − � 2l2�2��	̂ẅ − p�x,��/K� �7c�

here, k2=h2 /12R2, 	̂=	�1−� 2� /E, and the operators

j�u ,v ,w��j=1,2 ,3� are defined as

L1�u,v,w� = u,xx +
1 − �

2R2 u,�� +
1 + �

2R
v,x� −

�

R
w,x �8a�

L2�u,v,w� =
1 + �

2R
u,x� +

1 − �

2
v,xx +

1

R2v,�� −
1

R2w,� �8b�

L3�u,v,w� =
�

R
u,x +

1

R2v,� −
1

R2w − k2R2�4w �8c�

The set of governing Eqs. �7� and �8� forms the basis of the
onlocal elastic shell model for the study of the vibration behavior
f nanotubes. It is worthy to mention that the applied loading
�x ,�� plays a very important role in the study of multiwalled
anotubes. This loading usually simulates the van der Waals in-
eractions between two adjacent nanotubes. One may readily see
hat the effects of the internal characteristic parameter are in-
luded in this model as reflected by the terms in the right-hand
ide of Eqs. �7�. When the parameter � is zero, this model returns
o the classical elastic shell model.

Applying Eq. �7� to each of the multiwalled nanotubes, we have
or the first nanotube,

L1�u1,v1,w1� = �1 − � 2l2�2�	̂ü1 �9a�

L2�u1,v1,w1� = �1 − � 2l2�2�	̂v̈1 �9b�

L3�u1,v1,w1� = �1 − � 2l2�2�	̂ẅ1 − �1 − �2l2�2�
1

K
p12�x,��

�9c�

nd for the jth wall, j=2, . . . , �N−1�,

L1�uj,v j,wj� = �1 − � 2l2�2�	̂üj �9d�

2 2 2 ˆ ¨
L2�uj,v j,wj� = �1 − � l � �	v j �9e�

ournal of Applied Mechanics
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L3�uj,v j,wj� = �1 − � 2l2�2�	̂ẅj

− �1 − � 2l2�2�
1

K
	pj�j+1��x,�� −

Rj−1

Rj
p�j−1�j�x,��


�9f�

and for the Nth wall,

L1�uN,vN,wN� = �1 − � 2l2�2�	̂üN �9g�

L2�uN,vN,wN� = �1 − � 2l2�2�	̂v̈N �9h�

L3�uN,vN,wN� = �1 − �2l2�2�	̂ẅN

− �1 − � 2l2�2�
1

K
	pN�x,�� −

RN−1

RN
p�N−1�N�x,��


�9i�
where

pj�j+1��x,�� = c�wj+1�x,�� − wj�x,��� j = 1,2, . . . ,�N − 1�

�10a�

pN�x,�� = − k0wN�x,�� �10b�

in which, pj�j+1��x ,s� is the interaction pressure exerted on the
tube j from the tube j+1, while p�j+1�j�x ,s� is the interaction pres-
sure exerted on the tube j+1 from the tube j; they have the fol-
lowing relationship:

Rjpj�j+1��x,�� = − Rj+1p�j+1�j�x,�� j = 1,2, . . . ,N − 1; �11�

and pN is the interaction pressure between the outmost tube and
the surrounding elastic medium; k0 is the spring constant of the
surrounding elastic medium; and c is the van der Waals interaction
coefficient and can be estimated as �22�

c =
200

0.16
d2 erg/cm2 d = 0.142 nm �12�

where d is a parameter related to the C–C bond length. One may
realize that here we are dealing with a linear dynamic problem, so
the van der Waals interaction and interaction between the outer
tube and elastic surrounding media can be estimated from a linear
function of the deflection jump at two points, and the interactions
in the tangential direction can be neglected, as discussed in Refs.
�18,19�. But for a nonlinear dynamic behavior, the nonlinear
higher order terms and effects from the tangential force should be
included in these interaction expressions.

3 Double-Walled Carbon Nanotubes
Double-walled carbon nanotubes �DWCNTs� are considered in

this section to demonstrate how the nonlocal model can be used to
study the dynamics of multiwalled nanotubes. For the tubes, a
solution must be periodic in � �=s /R�. Therefore, we can set for
j=1,2:

uj�x,�,t� = �
n

ujn�x,t�cos n
� �13a�

v j�x,�,t� = �
n

v jn�x,t�sin n
� �13b�

wj�x,�,t� = �
n

wjn�x,t�cos n
� �13c�

Substitution of Eq. �13� into �9� yields the following differential
equations with respect to the variables x and t, for j=1,2,

L̃ �u ,v ,w � = 1 + � 2l2�n
�2

	̂ü − � 2l2	̂ü� �14a�
1 jn jn jn 	
Rj


 jn jn
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L̃2�ujn,v jn,wjn� = 	1 + � 2l2�n


Rj
�2
	̂v̈ jn − � 2l2	̂v̈ jn� �14b�

L̃3�ujn,v jn,wjn� = 	1 + � 2l2�n


Rj
�2
	̂ẅjn − � 2l2	̂ẅjn� + Fj�w1n,w2n�

�14c�

here

F1�w1n,w2n� =
c� 2l2

K
�w2n� − w1n� � −

c

K
	1 + � 2l2�n


R1
�2
�w2n − w1n�

�14d�

F2�w1n,w2n� =
� 2l2

K
	k0w2n� + c

R1

R2
�w2n� − w1n� �
 −

1

K
	1

+ � 2l2�n


R2
�2
	k0w2n + c

R1

R2
�w2n − w1n�


�14e�

here, the superscript � denotes differentiation with respect to the

ariable x and the operators L̃1 L̃2 and L̃3 are defined as

L̃1�ujn,v jn,wjn� = ujn� −
1 − �

2
�n


Rj
�2

ujn +
1 + �

2
�n


Rj
�v jn� −

�

Rj
wjn�

�15a�
�20c�
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L̃2�ujn,v jn,wjn� = −
1 + �

2
�n


Rj
�ujn� +

1 − �

2
v jn� − �n


Rj
�2

v jn

+
1

Rjn
�n


Rj
�wjn �15b�

L̃3�ujn,v jn,wjn� =
�

R
ujn� +

1

Rj
�n


Rj
�v jn − kj

2Rj
2�wjn�� − 2�n


Rj
�2

wjn�

+ 	�n


Rj
�4

+
1

kj
2Rj

4
wjn
 �15c�

3.1 Solution for Simply Supported Tow Ends. For a simple
edge-supported DWCNT, the boundary conditions read

v = w = Nx = Mx = 0 at x = 0 and x = L �16�

or, by using �4�1 and �5�1,

v = w = 0 u,x + �v,s + �
w

R
= 0 w,xx + �w,ss −

�

R
v,s = 0 at x = 0,L

�17�
A solution satisfying Eqs. �17� may be expressed as

ujn = A1
j cos �x cos �t v jn = A2

j sin �x cos �t wjn

= A3
j sin �x cos �t j = 1,2 �18�

in which �=m
 /L.
By substituting Eqs. �18� into the set of Eqs. �14�, we obtain a

system of six algebraic equations for the unknown constants Ai
j

�i=1,2 ,3 , j=1,2�. For nontrivial values of Ai
j, the determinant of

the algebraic equations must vanish, which leads to the following

characteristic equation for a double-walled carbon nanotubes:
det�

1	̂�2 − a11

1 + �

2
n
�̂1 − ��̂1 0 0 0

1 + �

2
n
�̂1 
1	̂�2 − a22 n
 0 0 0

− ��̂1 n
 
1	̂�2 − a33 0 0 −
c

K

1

0 0 0 
2	̂�2 − a44

1 + �

2
n
�̂2 − ��̂2

0 0 0
1 + �

2
n
�̂2 
2	̂�2 − a55 n


0 0 −
k0 + cR1/R2

K

2 − ��̂2 n
 
2	̂�2 − a66

� = 0 �19�
here

�̂i = m

Ri

L

i = Ri

2 + �2l2��̂i
2 + �n
�2� i = 1,2 �20a�

a11 = �̂1
2 +

1 − �

2
�n
�2 a22 =

1 − �

2
�̂1

2 + �n
�2 �20b�

a33 = 1 + k1
2��̂1

2 + �n
�2�2 −
c

K

1 a44 = �̂2

2 +
1 − �

2
�n
�2
a55 =
1 − �

2
�̂2

2 + �n
�2 a66 = 1 + k2
2��̂2

2 + �n
�2�2 −
k0 + cR1/R2

K

2

�20d�

The characteristic equation for a multiwalled carbon nanotube
�N�2� can be formulated by employing an analogous procedure.
As far as a single-walled carbon nanotube, the corresponding so-
lution is presented in the Appendix.

It is evident that Eq. �19� represents a sixth order frequency
equation for the unknown �2, and that it has six positive, real
roots for a given DWCNT. Hence, each tube of the tow tubes of a
DWCNT may vibrate in three different vibrational modes, namely,

radial �or bending�, longitudinal �or axial�, or circumferential �or
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orsional�. The two lowest eigenfrequencies may primarily relate
o the radial motions of the inner and outer tube, respectively.
ecause of the van der Waals’ interaction between the inner and
uter tubes, one can expect that the values of the frequencies
ertaining to each tube would be different than the ones corre-
ponding to a single-walled carbon nanotube with the same geo-
etric sizes and boundary conditions, as illustrated in Table 1.
ore details will be discussed in the next section.

Numerical Results and Discussions
Results of the resonant frequencies of carbon nanotubes �Fig. 1�

re presented in this section. The influence of the internal charac-
eristic parameter on the vibration of nanotubes is also demon-
trated. Unless otherwise specified, the following properties of the
arbon nanotubes are used: the length of a C–C bond is a
1.42 nm �18�; E=742 GPa, �=0.17 �9�; the density 	
2150 kg/m−3 �2�; the radius of the inner carbon tube R1=R1

o

0.35 nm and the radius of the outer carbon tube R2=R2
o

0.79 nm, the thickness of each nanotube h=0.495�R2−R1�, the
ength of the nanotubes L=10�R2; the van der Waals interaction
oefficient c can be obtained from Eq. �12�; the spring constant
rom the surrounding elastic medium k0=0.01�c. Also in the
ollowing discussion, �I and �VI are defined, respectively, as the
owest and highest frequencies, normalized by the corresponding
alues with no consideration of the inner characteristic parameter
.
Listed in Table 1 are the natural frequencies of two SWCNTs

nd one MWCNT for both ends simply supported. Each of the
WCNT has three natural frequencies, the lowest one correspond-

ng to radial vibration. There are six frequencies for the MWCNT,
hree for the inner tube vibration and the other three for the outer
ube. All values in Table 1 are normalized with the lowest value,

11 of the SWCNT with R=0.35 nm. Geometrically, the param-
ters of the inner tube of the MWCNT are exactly the same as
hese of the SWCNT with R=0.35 nm while those of the outer
ube of the MWCNT correspond to a SWCNT with R=0.79 nm.
ut these two nanotubes in the MWCNT are coupled via the van
er Waals’ force. The coupling interaction definitely has an influ-
nce on the vibration of the MWCNT, as reflected in Table 1, the
adial natural frequency of the outer tube of the MWCNT reduces
5%, from 0.9258549 to 0.41628983. One can also see that varia-
ions of natural frequencies corresponding to the axial and the
ircumferential vibration exist but not too much because the van
er Waals interactions are proportional to the displacement differ-
nces in the radial direction. The lowest is usually of primary
nterest in vibration, therefore, it can be concluded that the van der

aals interaction has a significant influence on the vibration
nalysis of multiwalled carbon nanotubes. This observation would
lso suggest that if a model for the vibration of MWCNTs ne-
lects, or inadequately handles the van de Waals interaction be-
ween two adjacent nanotubes, it would significantly compromise
he accuracy in the predictions of MWCNT properties.

The variation of frequencies with the ratio L /R2 is shown in
ig. 2 and can be used to justify the current nonlocal shell model
or the study of nanodynamics. One can observe that when the
atio L /R2 is larger than 10, the results of �I and �VI are conver-
ent. This observation is in good agreement with the classical thin

Table 1 Comparison of frequencies for a DW
tubes SWCNT � /�10 „m=n=1; L=10R2…

SWCNTs 1.0000000, 1.3358769, 2.20
R=0.35 nm

DWCNT 0.99834007, 1.3358729, 2.20
�inner tube R1=0.35 nm
hell theory. Of course, for the study of a nanostructure with the
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geometric parameter L /R2�10, the nonlocal thick shell theory
may be needed, and can be derived by a procedure similar to the
one employed in the current paper.

Figure 3 shows the results of the variation of frequencies with
the ratio h / �R2−R1�, i.e., the ratio of thickness over the distance in
radial direction between the two nanotubes. One can see that the
value of �VI, corresponding to the axial frequency of the inner
nanotubes is not affected by the varying value of h / �R2−R1� and
the radial frequency of the outer nanotube, �I does not change
either when the ratio h / �R2−R1� reaches a certain value such as
0.3 in the current example.

However, the results of the radial natural frequency �I exhibit

T and the corresponding to each of the nano-

74 0.9258549, 1.2368282, 2.0407208
R=0.79 nm

82 0.41628983, 1.243199, 2.0236288
�outer tube R2=0.79 nm�

Fig. 2 Variation of frequencies with the aspect ratio, L /R2

Fig. 3 Variation of frequencies with the ratio of thickness over
CN

414

401
�

distance between the nanotubes, h / „R2−R1…
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n oscillation for a value of the ratio h / �R2−R1� of 0.1. One can
urther observe that at this point the scale of the nanotube thick-
ess �around 1.3�10−11 m� falls into the range of molecular or-
er. But beyond this point, the thickness of the tube enters into the
ange of nanoscale and the results are shown to be convergent.
herefore, this figure demonstrates that the current shell model
ould give a reasonable prediction in the study of nanotubes.
The curves in Fig. 4 are used to show the influences of the inner

haracteristic parameter a and the material constant e0 on the
atural frequencies of this simply edge-supported MWCNT. Two
nteresting phenomena can be observed in this figure. First, both
he �I and the �VI decrease as the ae0 increases. The increase of
e0 means that the length of the C–C bond increases for a given
anomedium. Large values of the length of the C–C bond imply a
ig discontinuity. This observation suggests that a big error could
e created by directly applying a classical continuum elastic
odel in nanostructures. Second, both the �I and the �VI in-

rease as the geometric sizes of the MWCNT increase. Indeed, the
I and �VI almost reach 1 when the sizes of MWCNT reach a

ertain value, for example R1�0.5�10−8 m, R2�1.2�10−8 m,
nd L�1.2�10−7 m, a range beyond the nanometer order �1
10−9 m�L�1�10−8 m �17��. This observation means that the

lassical continuum elastic model can give a good prediction if the
eometric size of the nanotubes is large enough that the whole
tructure can be homogenized as a continuum. These two obser-
ations conclude that in the range of nanometer order 1
10−9 m�L�1�10−8 m, the inner characteristic parameter a,

hough small, has a significant effect on the natural frequencies
redicted by the elastic model and cannot be ignored in the study
f nanostructural behavior.

Presented in Fig. 5 are the variations of frequencies �I and �VI
ersus the modal numbers �m ,n�. Figures 5�a� and 5�b� are for the
ase of m=1 and varying n, while Figs. 5�c� and 5�d� are for n
1 and varying m. Here, the value of m refers to the axial modal
umber, and n to the circumferential modal number. One can see
hat the values of �I and �VI are more sensitive to n than to m.
ince the beam model theory does not take the circumferential
ode into account, this observation suggests that the beam model

or the study of the dynamics of nanotubes may be inadequate and
ay not yield proper results.
Figure 6 shows the effects of the surrounding elastic medium

n the frequencies of the MWCNTs. It can be seen that the values
f �VI for each mode �for example for n=1, m=1–5� in the axial
irection of vibration, almost do not vary with the variation of the

ig. 4 The influence of the internal characteristic parameter,
eo of the DWCNTs
lastic constant log�k0 /c� of the medium �Fig. 6�b��. But the val-

092 / Vol. 74, NOVEMBER 2007
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ues of �I corresponding to the basic radial vibration mode �m
=1,n=1� and higher modes in the axial direction such as �m
=2, . . . ,5 ,n=1� of the outer nanotube decrease as the value of
log�k0 /c� increases, especially after log�k0 /c��1 �Fig. 6�a��. This
observation is in good agreement with the results obtained by a
beam model simulation �19�. The elastic constant effects on the
higher modes in the circumferential direction such as n=2 are
shown in Fig. 7, in which a tendency similar to the one in Fig. 6
can also been found. The variation of frequencies for higher
modes of n�2 can only be predicted by the current shell model.
Combining the results in Figs. 6 and 7, we can see that for each
higher mode in the radial direction, such as m=1, n=1, 2, �I
decreases while �VI does not change as the log�k0 /c� increases. It
is obvious that the bigger the log�ko /c� value, the stiffer the sur-
rounding media. As a limiting case, if the surrounding elastic me-
dia is rigid, then no relative motions are possible for the outer
nanotube. Therefore, the predictions of a decrease in �I in Figs. 6
and 7 are expected.

Fig. 5 The variation of the frequencies versus „m ,n…

Fig. 6 The influence on the frequencies of the stiffness of the

surrounding medium, k0 versus „m ,n=1…
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Conclusions
In the present paper, the dynamic behavior of multiwalled car-

on nanotubes embedded in elastic media is studied by a nonlocal
hell model. In this model, small nanoscale parameters and the
an de Waals’ force between two adjacent nanotubes are included.
closed-form solution for the simply supported case is presented.

he influences of the small internal parameters of the carbon
anotubes on the natural frequencies are investigated. The effects
f the elastic constant of the surrounding medium are also ad-
ressed. Compared to a beam model, this shell model has the
bility to capture the higher vibration modes in the radial direc-
ion. Moreover, the validation of this model is discussed. The
bservations in this study suggest the following specific conclu-
ions: �1� The small internal parameters of the nanotubes have a
ignificant influence on the natural frequencies of the MWCNTs
hen the structures are in the order of nanometers. These influ-

nces diminish as the geometric sizes of the structures increase.
hen the order of the geometric size of the structures is beyond

he nanometer range, the influence from the small scale param-
ters could be neglected. �2� The van der Waals’ interaction has a
ignificant effect on the radial modal natural frequencies of the
uter tubes of the MWCNT. Since this radial frequency is of pri-
ary interest in the vibration study of a structure, the van der
aals’ force should not neglected in the study of nanodynamics.

3� When the relative stiffness, the ratio of the elastic modulus k0
f the surrounding media and the van der Waals interaction coef-
cient c increases, the radial frequencies decrease significantly.
his result can provide a guidance for the design of nanocompos-

tes in order to obtain a desirable vibration behavior.

cknowledgment
The financial support of the Office of Naval Research, Ship

tructures and Systems, S&T Division, Grants Nos. N00014-90-
-1995 and N00014-0010323, and the interest and encouragement
f the Grant Monitor, Dr. Y.D.S. Rajapakse, are both gratefully
cknowledged. We are also grateful to Professor Z.L. Wang of the
chool of Materials Engineering of the Georgia Institute of Tech-
ology for his helpful discussions.

ppendix: A Single-Walled Carbon Nanotube
The solution for the vibration of a single-walled carbon nano-

ube �SWCNT�, simply supported at the ends, can be easily ob-
ained from the results in Sec. 3. The external force considered is

ig. 7 The influence on the frequencies of the stiffness of the
urrounding medium, k0 versus „m ,n=2…
nly the force from the surrounding elastic medium and it reads

ournal of Applied Mechanics
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p�x,�� = − k0w�x,�� �A1�
Following a similar procedure as in Sec. 2, the governing equa-

tions can be written as

L̃1�un,vn,wn� = 	1 + � 2l2�n


R
�2
	̂ün − � 2l2	̂ün� �A2a�

L̃2�un,vn,wn� = 	1 + � 2l2�n


R
�2
	̂v̈n − � 2l2	̂v̈n� �A2b�

L̃3�un,vn,wn� = 	1 + � 2l2�n


R
�2
	̂ẅn − � 2l2	̂wn� +

� 2l2

K
k0wn�

−
1

K
	1 + � 2l2�n


R
�2
k0wn �A2c�

The characteristic equation for natural frequencies of the
SWCNT can be according derived as

det�
	̂�2 − a1

1 + �

2
n
�̂ − ��̂

1 + �

2
n
�̂ 
	̂�2 − a2 n


− ��̂ n
 
	̂�2 − a3

� = 0 �A3�

where

�̂ = m

R

L

 = R2 + � 2l2��̂2 + �n
�2� a1 = �̂2 +

1 − �

2
�n
�2

�A4a�

a2 =
1 − �

2
�̂2 + �n
�2 a3 = 1 + k2��̂2 + �n
�2�2 −

k0

K



�A4b�
This model is the accurate solution for single-walled carbon nano-
tube reinforced composites.
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