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ABSTRACT: This article investigates the thermal response of an axially restrained
composite column, which is exposed to a heat flux due to fire. The heat damage, the
charred layer formation and nonuniform transient temperature distribution in the
column exposed to fire from one side are calculated by the thermal model developed
by Gibson et al. [1]. For the thermal response analysis, the mechanical properties of
the fire-damaged (charred) region are considered negligible, while the degradation of
the elastic properties with temperature in the undamaged layer (especially near the
glass transition temperature of the matrix) is accounted for using experimental data
for the elastic moduli. Due to the nonuniform stiffness distribution through the
thickness and the effect of the ensuing thermal moment, the structure behaves like an
imperfect column, and responds by bending rather than buckling in the classical
Euler (bifurcation) sense. Another important effect of the non-uniform temperature
is that the neutral axis moves away from the centroid of the cross-section, resulting in
an additional moment due to eccentric mechanical loading, which tends to bend the
structure. The compressive behavior of a column subjected to simultaneous high
intensity surface heating and axial compressive loading was investigated experimen-
tally to verify the anticipated theoretical response. All specimens exhibited bending
and subsequent catastrophic failure, even at compressive stresses well below these
corresponding to the Euler load.

KEY WORDS: composite column, fire, thermal response, bending.

INTRODUCTION

F
IBER REINFORCED POLYMERIC composites are used extensively in aerospace, marine,
infrastructure and chemical processing applications. In all these applications, fire
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events and the resulting effects on the structural integrity are of considerable concern.
In addition to the implications for design, quantitative information regarding the nature of
the strength loss is required to make decisions regarding, for example, the seaworthiness of
a ship that has sustained fire damage.

Many of the thermal properties of composites related to fire have been thoroughly studied
and are well understood, including ignition times, heat release rates, smoke production rates
and gas emissions (e.g., Sorathia et al. [2], Gibson and Hume [3]). Also, recent work on the
post-fire residual properties (Mouritz and Gardiner [4]) showed large reductions to the
edgewise compression capacity of phenolic-based sandwich composites despite their good
flame resistance. However, an important gap that remains in the understanding of
composites is their response and structural integrity due to the combined effect of
mechanical and thermal loading due to fire. The present article addresses this issue on the
example of a symmetrically laminated composite column. It is illustrated that such column
that would experience bifurcation buckling as a result of compressive loading exhibits
bending in the presence of fire. The article expands the previous analysis [5] providing
detailed explanations of the solution methodologies for different boundary conditions and
nonlinear and linear formulations. The equivalent linearization approach described in the
article can be applied to generate accurate approximate solutions. Contrary to the previous
study [5] that concentrated on the effect of the heat flux on the response, this article
emphasizes the time-dependent nature of the behavior of the column. In particular, the
results are shown for the changes in the thickness of the charred layer, the thermally-induced
bending moment, axial constraint stress and deflections as functions of the exposure time.

The column analyzed in this article is shown in Figure 1. This figure reflects the presence
of a charred layer on the side of the column directly affected by fire. The length and total
thickness of the column are denoted by L and H respectively. The thickness of the
undamaged layer is represented by l, which is dependent on the time, t. Two cases shown in
Figure 1 refer to different boundary conditions discussed below in the article.

ANALYSIS

Thermal Model for the Temperature and Char Distribution

The problem of predicting the behavior of polymer composite materials exposed to a fire
environment may be divided into two different aspects, namely internal and external
processes. The internal processes include all physical and chemical transformations which
occur in the laminate. The external processes involve the determination of the shape, size
and intensity of the flame in the boundary layer and, secondly, heat transfer from this
frame to the affected laminate. The finite element model used in the article to predict the
behavior of a GRP laminate subject to the fire environment is based on the mathematical
model proposed by Henderson et al. [6] and further developed by Looyeh et al. [7] and
Gibson et al. [8]. Following this approach, the non-linear partial differential equations that
govern the behavior of the laminate in subject to fire are solved numerically using a mixed
explicit-implicit finite element technique. Accordingly, the amount of the remaining
resin material can be obtained as a function of the exposure time. Based on the experi-
ments and calculations performed by Gibson et al. [8], we assume that when the residual
resin context is less than 80%, the material can be treated as charred. A typical temperature
distribution through the thickness of a composite column subject to fire is shown in Figure 2,
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while the normalized thickness of a charred layer in the same column is depicted in
Figure 3 (both figures are discussed in detail in the section on numerical results).

Thermomechanical Analysis: Formulation

The predicted temperature and charred layer thickness distribution with time along the
thickness direction can be obtained by the thermal finite element model referred to in the
previous section. The thermal buckling response of the column consisting of an undamaged
layer and a charred layer, as shown in Figure 1, is analyzed by the quasi-static assumption.
This assumption means that at each time instant the column is in an equilibrium state and
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Figure 1. Definition of the geometry for the laminated column, which is composed of an undamaged layer
and a charred layer, and subjected to a combination of the heat flux due to fire, Q, and a compressive load, P.
Case (a): immovable ends, case (b): axially unconstrained column.
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Figure 2. Temperature distribution in the column subjected to heat flux Q¼ 25 kW/m2, the through-the-
thickness y-coordinate is normalized with respect to the total thickness of the column. The seventh order
polynomial fit curves are obtained by interpolation.
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Figure 3. Variation of the normalized thickness of the charred layer with the exposure time, which is not a
continuous function, due to the assumption that the resin becomes fully charred when its residual content
drops below 80%. The fire heat flux is Q¼25 kW/m2.
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the temperature distribution and the charred layer thickness obtained by the finite element
model can be used in the static analysis. Such assumption is justified by a relatively long
process of char formation as compared to the period corresponding to the fundamental
frequency of a typical column. It is further reasonable to conservatively assume that the
mechanical properties of the charred (fire-damaged) layer are negligible because of the
thermal decomposition of resin material. Therefore, we only considered the undamaged
layer in the thermomechanical response analysis, although the temperature distribution in
the undamaged region has been obtained accounting for the existence of the char layer.

It is well known that the elastic modulus, E, of polymers depends strongly on the
temperature, especially in the vicinity to the glass transition temperature, Tg, of the matrix.
A recent paper by Kulcarni and Gibson [9] studied the effects of temperature on the elastic
modulus of E-glass/vinyl-ester composites providing measurements of temperature
dependence of the elastic modulus of the composite in the range of 20–1408C. The glass
transition temperature of the matrix considered in Ref. [9] was Tg¼ 1308C. Near this
temperature, the elastic modulus shows a significant variation in response to small
temperature changes, but below Tg the variation is relatively small. As can be observed
from Figure 4, the variation of the modulus reported in Ref. [8] can conveniently fit a third
order polynomial equation. If E0 denoted the modulus at room temperature, T0¼ 208C,
the modulus E can be represented as the following function of temperature T:

E

E0
¼ 1� a1

T� T0

Tg � T0

� �
þ a2

T� T0

Tg � T0

� �2

�a3
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Tg � T0

� �3

¼ 1� a1
�T

�Tg

� �
þ a2

�T

�Tg
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� �3
ð1Þ
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Figure 4. The effects of temperature on the elastic modulus of pseudo-isotropic E-glass/vinyl-ester
composites (based on data from [9]).
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where for the E-glass/vinyl-ester, E0¼ 20.6GPa and a1¼ 0.348, a2¼ 0.715, and a3¼ 0.843.
The composite studied in Ref. [9] has a fiber volume fraction of 0.516 and consists of five
sub-layers with the orientation of each sub-layer [0/90/þ45/�45/Random]. Accordingly,
the modulus shown in Equation (1) can be interpreted as that for an equivalent pseudo-
isotropic material. Equation (1) captures the physics of the non-linear dependence of the
composite modulus on the glass transition temperature of the matrix, Tg. Temperature
distribution in the undamaged layer, �T, that is present in Equation (1) can be determined
from the finite element analysis, as described in the previous section.

In order to simplify the subsequent formulation for the thermomechanical response
analysis, the axis x is located at the mid-surface of the undamaged layer, as shown in
Figure 1. Now we define an ‘average’ modulus Eav and ‘first’ and ‘second’ moments of the
modulus with respect to the mid-surface, Em1 and Em2, respectively, by:

EavA ¼

Z
A

EdA; Em1lA ¼

Z
A

Ey dA; Em2I ¼

Z
A

Ey2 dA ð2Þ

where A is the cross-sectional area of the undamaged layer, l is the thickness of the
undamaged layer; and I is the moment of inertia (I ¼

R
A y2 dA). The integrals in

Equation (2) are evaluated numerically as the modulus E is dependent on the temperature
distribution, which has been determined by the finite element analysis.

Due to the nonuniform modulus E the neutral axis of the column does not remain at the
mid-surface during fire. The distance e of the neutral axis from the mid-surface axis x, is
determined from:

e

Z
A

EðyÞdA ¼

Z
A

EðyÞy dA ð3Þ

which, by use of Equation (2) leads to:

e ¼
Em1l

Eav
: ð4Þ

The thermal force along the longitudinal axis x is:

NT
x ¼

Z
A

E yð Þ�l�T yð ÞdA ð5Þ

where the longitudinal thermal expansion coefficient �l is assumed independent of
temperature. Using Equation (2) and the temperature distribution results, the force given
by Equation (5) can be evaluated numerically.

The thermal force developing due to the constraints at both ends of the column could
cause buckling. However, in the case where one of the surfaces of the structure is exposed
to fire, a bifurcation buckling is not observed as a result of a thermal moment that also
develops. This moment (with respect to the neutral axis of the column) is:

MT
Z ¼

Z
A

E yð Þ�l�T yð Þ y� eð ÞdA: ð6Þ

Therefore, it is necessary is to determine the response of the column under the influence of
both NT

x and MT
Z, where the latter moment changes the character of the problem from

bifurcation buckling to a bending problem.
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We consider two cases: (a) the column constrained at the two ends which cannot move
axially; (b) the column with axially unconstrained ends under a constant applied load P.
In the former case, we assume that the external support force P that develops due to the
boundaries is large enough to constrain the column, preventing axial displacements at both
ends. Such situation is encountered in a long multi-span column with equally-spaced
supports subject to a load independent of the axial coordinate. Then the boundaries of
each span are prevented from axial displacements due to structural symmetry. In the
present problem the axial force Nx does not vary with the axial position x. However, unlike
the case of a uniformly heated column, the force P is smaller than NT

x because of the
expansion of the bent column caused by the thermal moment MT

Z. In other words, the
column bends away from its original straight configuration due to the thermal moment
MT

Z, which relieves some of the external support force at the immovable ends.
Notice that in the case of immovable ends P is a derived quantity, rather than a

controlled quantity. In such case, the controlled quantity is the thermal loading due to the
fire, while the response quantity is the transverse deflection of the column.

In the following subsection we illustrate three solutions. The next subsection represents
the solution of the geometrically nonlinear problem followed by a the closed-form result
obtained for the geometrically nonlinear formulation by the equivalent linearization method.
Finally, in case of small deflections, typically limited to half-thickness of the depth of the
noncharred cross-section, the linear solution is shown to be sufficiently accurate. The following
solutions are applicable for both immovable as well as movable ends of the column.

Nonlinear Analysis

Let us denote by u0 and w0 the displacements along the axial x and transverse y
directions at the neutral axis and by � the rotation of the cross-section due to bending.
The nonlinear strain at the neutral axis y¼ e, is:

"0 ¼ u0, x þ
1

2
�2: ð7Þ

In the following we account for the transverse shear following the procedure in Huang
and Kardomateas [10]. In particular, we can set

dw

dx
¼ sin � þ �eq

� �
ð8Þ

where �eq is the equivalent shear angle, i.e., a difference between the slope of the deflected
column axis and the rotation � of the cross-section due to bending.

It is reasonable to assume that the shear modulus, G, changes with temperature in the
samemanner as the elastic Young’s modulus, E, implicitly neglecting the effect of fire on the
Poisson ratio of an equivalent pseudo-isotropic E-glass/vinyl-ester material. Accordingly:

G

G0
¼ 1� a1

T� T0

Tg � T0

� �
þ a2

T� T0

Tg � T0

� �2

�a3
T� T0

Tg � T0

� �3

¼ 1� a1
�T

�Tg

� �
þ a2

�T

�Tg

� �2

�a3
�T

�Tg

� �3

:

ð9Þ
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An effective shear modulus G is now defined based on the shear compliance as [10]:

l

G
¼

Z l=2

�l=2

dy

G yð Þ
: ð10Þ

The equivalent shear angle, �eq, is subsequently defined as:

�eq ¼
�P sin �

GA
ð11Þ

where � is the shear correction factor which accounts for the nonuniform distribution
of shear stresses throughout the cross-section.

Then, the strain at an arbitrary point, "ðx, yÞ, can be represented by

" ¼ "0 xð Þ � y� eð Þ
d � þ �eq
� �

dx
: ð12Þ

When the stress calculated using Equation (12) is integrated throughout the section, the
resultant force should be equal to �PþNT

x , i.e.:Z
A

E yð Þ" x, yð ÞdA ¼ �PþNT
x : ð13Þ

Using Equations (7), (11), and (12), Equation (13) becomes:

EavA u0,x þ
1

2
�2

� �
þ Eave� Em1lð ÞA 1þ

�P cos �

GA

� �
�, x ¼ NT

x � P ð14Þ

The substitution of Equation (4) into Equation (14) yields:

u0,x ¼
NT

x � P

EavA
�
1

2
�2 ð15Þ

which we can integrate over the length of the column subject to the boundary conditions
that the ends are restrained in the axial direction, i.e., u0 0ð Þ ¼ 0 and u0 Lð Þ ¼ 0 (case a).
Performing the above-mentioned integration we obtain:

NT
x � P

� � L

EavA
�
1

2

Z L

0

�2 dx ¼ 0 ð16Þ

which is applicable for the entire loading range of the column. Equation (16) is a
‘constraint equation’ expressing the condition that the overall change in displacement
between the end supports must be equal to zero because the ends of the column are
immovable due to a support load P.

The effective bending rigidity (EI)eq of the column influenced by the nonuniform
stiffness is defined by

EIð Þeq¼

Z
A

E yð Þ y� eð Þ
2dA: ð17Þ
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Using Equations (2) and (4), Equation (17) becomes:

EIð Þeq¼ Em2I�
E2
m1l

2A

Eav
: ð18Þ

Next we modify the column equilibrium equation to account for the thermal loading
including thermal force and moment, moderately large deflections and transverse shear.
The moment accounting for the thermal effect on the material properties is given by:

M ¼ � EIð Þeq
d�

dx
�MT

z : ð19Þ

From equilibrium taking into account the compressive applied force, P, at both ends,
the moment at an arbitrary position is given by:

M ¼ PwþM0 ð20Þ

where M0 is the moment at x¼ 0 that is equal to zero in case of simply supported ends.
Differentiating Equations (19) and (20) with respect to x and using Equations (8) and

(11) with the additional assumption that the shear angle is small, so that sin �eq � �eq and
cos �eq ¼ 1, results in:

EIð Þeq
d2�

dx2
þ P

�P

2AG
sin 2� þ sin �

� �
þ
dMT

z

dx
¼ 0: ð21Þ

where the last term in the left side should be taken equal to zero since the heat flux and
subsequently, the thermal moment are assumed independent of the axial coordinate.

The moment boundary conditions at the simply supported ends of the column are:

� EIð Þeq
d�

dx
0ð Þ �MT

z ¼ 0; � EIð Þeq
d�

dx
Lð Þ �MT

z ¼ 0: ð22Þ

The solution process can now be outlined as follows. At each time instant, the
temperature distribution and the thickness of the charred region are determined from the
finite element analysis. Subsequently, the instantaneous values of the elastic and shear
moduli are specified from Equations (1) and (9), respectively. The thermal force and
thermal moment are found using Equations (5) and (6). In case (a), i.e., if the ends of the
column are prevented from axial displacements, the application of the constraint condition
(16) jointly with the equilibrium Equation (21) subject to boundary conditions (22) yields
the rotation of the cross-section, i.e., �, and the axial constraint force P. The rate of change
of the axial displacements and the transverse deflection can now be determined from
Equations (15) and (20), respectively.

In case (b), i.e., if the axial force applied to axially unconstrained column is prescribed,
the integration of equation of equilibrium (21) subject to the boundary conditions (22)
yields the rotation. The subsequent solution is identical to case (a). The methodology of
the solution for both cases discussed above is illustrated in Figure 5.
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Closed-form Solution by Equivalent Linearization

Although the solution process explained above is straightforward it may be convenient
to obtain a closed-form solution, even if it still requires a numerical analysis of the
resulting equations. In this section, we illustrate such solution obtained through
the linearization of the equation of equilibrium (21). The solution is applicable to case
(b) where the ends are free to move axially, so that the axial force in the column is known.
The analysis of case (a) conducted along the same lines is more complicated since it
involves the necessity to linearize the ‘constraint equation’ (16).

∆T (y, t )

Eav (t )

(EI )eq  (t )

q (x, t ), P

T
z(t ), M (t )T

xN

Constrained ends Unconstrained ends

0, xu

Q (heat flux)

E (y, t ) G (y, t ) G (t )

q (x, t )

(x, t ), w(x, t )

Figure 5. Block-diagram with the sequence of the analysis of a geometrically nonlinear column subject to fire
and compression.
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We begin assuming that in a moderately nonlinear problem the number of terms in
power series representing sine functions can be limited, so that:

sin n � � n � �
n�ð Þ3

6
n ¼ 1, 2ð Þ: ð23Þ

Then, Equation (21) can be written as:

EIð Þeq
d2�

dx2
þ !2� � f�3 ¼ 0 ð24Þ

where:

!2 ¼ P
�P

AG
þ 1

� �

f ¼
P

3

2�P

AG
þ
1

2

� �
:

ð25Þ

According to the method of equivalent linearization (Panovko [11]), the nonlinear
restoring force in Equation (24) is replaced with a linear counterpart yielding:

EIð Þeq
d2�

dx2
þ �2� ¼ 0: ð26Þ

The value of constant �2 is found from the requirement that the overall squared error

r ¼ !2� � f�3
� �

� �2� ð27Þ

should be minimal over the range of variations of the function �. In the present problem,
� varies from zero at the center of the column (assuming symmetric about the mid-span
deformations as a result of the symmetry of the load and structure) to a still unknown
maximum value at the end of the column. Another approach to the variation of � could be to
vary it from the minimum value at one end to the maximum value at the opposite end of the
column (absolute values of these angles are equal), but it is easy to see that the results obtained
by either method are identical. Accordingly, the minimization requirement implies:

d

d�2

Z �max

0

r2 d� ¼ 0: ð28Þ

Panovko [11] suggested that the ‘impact’ of the linearization increases at larger
deviations from zero and accordingly, instead of the minimization of the overall squared
error, it is more accurate to minimize the squared moment of this error:

d

d�2

Z �max

0

r2�2 d� ¼ 0: ð29Þ
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As was shown in the representative example in Ref. [11] equivalent linearization performed
according to (29) yields a practically exact solution for a vibrating single degree of freedom
system with cubic nonlinearity.

The result of the procedure described above can easily be shown:

�2 ¼ !2 �
5

7
f�2max: ð30Þ

The solution of Equation (26) is of course:

� ¼ F1 sin�1xþ F2 cos�1x; �1 ¼
�ffiffiffiffiffiffiffiffiffiffiffiffi
EIð Þeq

p : ð31Þ

Now satisfying the boundary conditions (22) jointly with the requirement that
�(x¼ 0)¼ �max, we can specify constants F1, F2and the value of �max:

F1 ¼ �
MT

z

�1
F2 ¼

MT
z

�1

1� cos�1L

sin�1L
; �max ¼ F2: ð32Þ

It is easy to show that �max ¼ � 0ð Þ ¼ �� Lð Þ and �ðL=2Þ ¼ 0.
The value of the maximum rotation corresponding to prescribed mechanical and

thermal loads can be numerically determined from Equation (32). Subsequently, the
analysis is conducted as is shown in the next section for the linear system with axially
unconstrained ends.

Linear Thermoelastic Analysis

If deformations of the column remain limited, i.e., the problem is geometrically linear,
differential Equation (21) can be linearized yielding a closed form solution. Taking into
account the fact that the thermal moment MT

z is independent of x, and using sin n�¼ n�
(n¼ 1, 2), results in the linear equation:

EIð Þeq
d2�

dx2
þ P

�P

AG
þ 1

� �
� ¼ 0 ð33Þ

that can be solved subject to boundary conditions (22).
Introducing

�2 ¼
P

EIð Þeq
þ

�P2

EIð ÞeqAG
ð34Þ

the solution can be derived in the form:

� xð Þ ¼
MT

z

� EIð Þeq

1� cos �Lð Þ

sin �L
cos �L� sin �x

� �
: ð35Þ

Note that the symmetry condition � L=2ð Þ ¼ 0 is satisfied by Equation (35).
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Upon the linearization and using cos � � 1, the constraint Equation (16) becomes

NT
x � P

� � L

EavA
�
ðMT

z Þ
2

2 EIð Þeq�
h i2 1� cos �Lð Þ

sin �L

L

sin �L
�

1

�

� �
¼ 0: ð36Þ

The vertical deflection of the beam is obtained for the linear problem by using
Equations (8) and (11) and integrating:

w xð Þ ¼ 1þ
�P

GA

� �Z x

0

� �ð Þ d�: ð37Þ

Substituting Equation (35) into Equation (37) yields:

w xð Þ ¼
MT

z

EIð Þeq�
2

1þ
�P

GA

� �
1� cos�Lð Þ

sin �L
sin �xþ cos �x� 1ð Þ

� �
: ð38Þ

Note that from Equation (38) the deflections at the ends are zero (as they should be
in a simply supported column), w(0)¼w(L)¼ 0, and that the mid-point deflection,
w(L/2)¼wm, is:

wm ¼
MT

z

EIð Þeq�
2

1þ
�P

GA

� �
1

cos �L=2ð Þ
� 1

� �
: ð39Þ

The deflection given by Equation (39) becomes infinite for lL¼� (the Euler load of
the column).

Consider now case (a), i.e., the column with axially constrained ends. If the thermal
loading is prescribed via the fire heat influx Q, then NT

x and MT
z can be determined, so that

the only unknown in the right side of Equation (38) is P (or l from Equation (34)). One
can solve the transcendental Equation (36) for P, then use this value of the axial force in
Equation (38) and thus obtain the relationship between the thermal loading Q and the
transverse deflection, w. This relationship is obtained for constrained columns only and
in this case, P, which is obtained from Equation (36), is the support reaction. On the other
hand, if the ‘constraint’ condition of immovable supports is released (the second case
where the ends are free to move axially), then P is the applied load and Equation (38)
immediately provides the solution for transverse deflections. Numerical procedures for
cases (a) and (b) described here are schematically depicted in Figure 6. Note that in
the absence of the thermal moment MT

z , the constraint Equation (36) reduces to NT
x ¼ P,

i.e., the solution for a uniformly heated column.

NUMERICAL RESULTS AND DISCUSSION

Numerical results are presented for a composite pseudo-isotropic E-glass/vinyl-ester
column, which is exposed to a heat flux Q¼ 25 kW/m2. The length of the column
is L¼ 0.15m, its thickness is H¼ 0.012m, and the width is b¼ 0.025m. The original
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quasi-isotropic E-glass/vinyl-ester has the following properties: �¼ 18.0� 106/8C;
E¼ 20.6GPa; G¼ 2.1GPa at room temperature which is T0¼ 208C.

Based on the thermal model/finite element analysis the temperature and charred layer
thickness can be obtained as functions of time. In Figure 2, the temperature distribution
throughout the thickness of the column exposed to a heat flux Q¼ 25 kW/m2 is shown for
representative exposure times varying from 40 to 280 s. Since only the temperatures at the
eight nodes are considered, the seventh order polynomial fit curves are obtained by the
interpolation, which are subsequently used in the thermomechanical analysis. It is obvious
that the temperature increases along with time t, eventually becoming more uniform
throughout the thickness. In Figure 3, we show the charred layer thickness variation with
time, where the residual resin content less than 80% is used as a criterion for the fully
charred material. While the variation of residual resin content with time is continuous, the
corresponding relationship in Figure 3 is not since the residual resin content (RRC)
exceeding 80%, was treated as the undamaged material. Thus, the normalized charred
layer thickness jumps at the time when the ratio of RRC becomes smaller than 80%.

The variation of the thickness of the charred layer was used in the quasi-static
thermomechanical analysis that treated the column material by a two-layer approximation

Q (heat flux)

M(t ), (t )
x

T

z

T
N

Unconstrained ends Constrained ends 

∆T (y, t )

E (y, t )

Eav (t )

P (t )

w (x, t )

(E )eq (t )

G (y, t ) G (t )

Figure 6. Block-diagram with the sequence of the analysis of a geometrically linear column subject to fire and
compression.
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where the undamaged layer was associated with the original material. The temperature
distribution in the undamaged region obtained by the thermal/finite element model was
used to analyze the thermal resultant force and moment, accounting for the variation of
the material properties with temperature. The effect of temperature on the elastic modulus
of E-glass/vinyl-ester composites is shown in Figure 4 referred to above. Moreover, since
the experimental data are available only up to the glass transition temperature of the
matrix, Tg, we assumed that beyond Tg, if the material is not charred yet, the elastic and
shear modulus remain stable and do not decrease anymore.

With the quasi-static assumption, we analyze the thermomechanical response of the
column at exposure times from t¼ 0 s until t¼ 300 s. The thermal moment developed in
the column is shown as a function of the exposure time in Figure 7. The moment is not
a continuous function of time since RRC is not continuous in the previous derivations
based on a 80% breakpoint between the intact and fully charred material. The thermal
moment variations reflect the temperature and material properties distributions within the
column. At the beginning of the heat exposure, the resin material is rapidly decomposed
due to high temperature and RRC varied with time continuously, but as t560 s, the
RRC exceeds 80% throughout the entire column, so that we neglect the presence of a
charred material. The thermal moment increases from the beginning of the heat exposure
t¼ 0 s until t¼ 60 s, which is due to the continuous temperature variation in the
column. Within the exposure time interval between t¼ 60 s and t¼ 140 s, a part of material
(1/7 of the entire thickness of the column) is charred according to Figure 3 and the
properties of the charred material are neglected. Accordingly, the absolute value of the
thermal moment is reduced during this time interval as a result of the decreasing
effective thickness of the column and the corresponding variation of temperature. With the
further increasing exposure time, more material is charred and the thermal moment
decreases accordingly.
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Figure 7. Thermal moment developed in the column vs. exposure time. The moment is not a continuous
function, since the residual resin content does not account for a continuous variation with exposure time.
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The axial constraint stress 	xx in a simply supported axially constrained column (case a)
subject to the heat flux Q¼ 25 kW/m2 is shown as a function of time in Figure 8. The stress
increases with time at t5140 s, but the trend is reversed and 	xx decreases with exposure
time t4 140 s; the second order polynomial curve was obtained to approximately fit the
variation trend. We can analyze the variation of the axial constraint by dividing the
exposure time into four zones, the thickness of charred material being constant within each
zone (these zones are reflected in Figure 3). It is observed that the variation of the
constraint stress is nonlinear in each zone, which is due to the material properties that
nonlinearly decrease with the exposure time. There exists a peak value of the axial
constraint stress at exposure time t¼ 140 s. The fact that 	xx decreases beyond this instant
indicates that at a certain level of deformation the structure starts to ‘pull’ from the ends
rather than ‘push’ against the ends.

The mid-point deflection wm normalized by the original thickness of the column is
shown in Figure 9. The variation of the mid-point deflection with time is not smooth;
however, the linear curve can adequately fit it, except for the initial time interval. It can be
observed that in general, the mid-point deflection of the column increases with the
exposure time. The direction of the mid-point is always positive, implying that the column
bends toward the heat source under the constrained boundary conditions.

Experimental studies on fiber-reinforced vinyl-ester (Derakane 510A) columns with
constrained end cross-section were reported elsewhere (see for example, Ref. [5]).
In general, the results of these studies confirmed the theoretical predictions of the present
article. For example, a positive deflection was observed in the tests for the column exposed
to the heat flux Q¼ 25 kW/m2 under the constant compressive axial load P, corresponding
to a stress of 10.5MPa (based on the thickness of the original section). At the same time, it
was noted that in the case of fire of low intensity, the decomposition of resin does not occur.
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Figure 8. The axial constraint stress 	xx vs. exposure time t. A second order polynomial curve was obtained to
fit the variation trend.
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For example, the failure mode of the column subject to the above-mentioned loading is
shown in Figure 10 [5]. In this case the failure took place prior to the resin decomposition
as a result of a combination of the thermally-induced properties deterioration, thermal
bending, and consequent eccentricity of loading. As is obvious from Figure 10, the final
phase of the response is characterized by massive delaminations. This would justify the use
of a nonlinear finite element analysis to trace the final phase of the response. However, the
degree of damage accumulated prior to such catastrophic event makes the column

Figure 10. The failed fiberglass reinforced composite column exposed to the fire heat flux Q¼ 25 kW/m2

under the constant axial compressive load, P, corresponding to a stress of 10.5 MPa (the stress is calculated
based on the original section geometry).
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Figure 9. The normalized mid-point transverse deflection vs. exposure time for the constrained column
(case (a)) under the heat flux due to fire, Q¼ 25 kW/m2.

Structural Integrity of Composite Columns Subject to Fire 1031

 at GEORGIA TECH LIBRARY on November 13, 2009 http://jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com


unusable, i.e., the analysis of the initial damage onset available using the present solution
should be sufficient for most applications.

CONCLUSIONS

The solution for the response of a composite column exposed to a heat flux due to fire
and an axial compressive load is considered. Two boundary conditions analyzed in the
article include the cases where the column is axially restrained (immovable ends) and
where the ends are free to move axially (no axial restrain). The temperature and charred
material thickness distributions are obtained by the thermal/finite element method of
Gibson analyzing the heat response problem for the polymer composite material.
Subsequently, this temperature and charred thickness profile are employed in conjunction
with the temperature-dependent moduli of the composite material to analyze the
thermomechanical response. The solution is obtained assuming that the mechanical
properties of the charred layer are negligible. Both geometric nonlinearity as well as shear
deformability can be included in the analysis.

The following conclusions follow from the analysis:

1. The thermal moment induced in the column during fire decreases with the exposure
time due to the resin material decomposition and the gradual development of the
charred layer.

2. The variation of the axial constraint stress in the constrained column with the exposure
time is nonlinear; there exists a peak value followed with a decrease of the constraint
stress. This phenomenon is related to the variation of the char thickness, membrane
stresses produced as a result of increasing lateral deflections, and the non-linear
temperature and material properties distributions in the undamaged composite.

3. The deflection of the constrained column increases with the heat exposure time
(approximately in a linear fashion). The bending deformation occurs toward the heat
source, which is consistent with the experimental observation for the similar column.

4. The thermal bending moment is unavoidable in the structures subject to fire on one
surface. This moment causes out-of-plane transverse deflection from the onset of heat
exposure. Therefore, the problem of bifurcation buckling does not exist in structures
undergoing fire; instead such structures experience thermally-induced bending (it could
be shown that an exception is found in clamped structures subject to fire that produces
a uniform heat flux over the entire exposed surface).
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