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Nonlinear High-Order Core Theory for Sandwich Plates
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A new nonlinear high-order theory for orthotropic elastic sandwich plates is formulated. In this theory, in which
the compressibility of the soft core in the transverse direction is considered, the transverse displacement in the core is
of fourth order in the transverse coordinate and the in-plane displacements are of fifth order in the transverse
coordinate. The theory is derived so that all core/face-sheet displacement continuity conditions are fulfilled. The
nonlinear governing equations, as well as the boundary conditions for sandwich plates with orthotropic phases, are
derived via a variational principle. The solution procedure is outlined and numerical results for the simply supported
case of transversely loaded plates are produced for several typical sandwich configurations. These results are
compared with the corresponding ones from the elasticity solution. Furthermore, the results using the classical
sandwich model with and without shear are also presented. The comparison among these numerical results shows
that the solution from the current theory is very close to that of the elasticity in terms of both the displacements and
the transverse stress through the core. Observations in the current work suggest that this new high-order theory
could have significant applications in studying the structural and failure behavior of sandwich plates.

Nomenclature
a = plate length
b = plate width
c = core half-thickness
f = face-sheet thickness
Nyt = total plate thickness
90 = peak value of the applied sinusoidally distributed
transverse load
u = in-plane x displacement
v =  in-plane y displacement
w = transverse displacement (along z)
X = in-plane coordinate along the length
y = in-plane coordinate along the width
Z = thicknesswise coordinate
Subscript
0 = middle surface
Superscripts
b = bottom face sheet
c = core

top face sheet

L

T IS the core and its layout in a sandwich construction, consisting

of two metallic or composite thin face sheets separated by a thick
core, that give this type of structure superior properties: namely, high
stiffness and strength with little resultant weight penalty and high
energy-absorption capability with regard to impact loading. With the
increasing interest in the application of sandwich structures to
aerospace vehicles, marine vessels, and civil infrastructure, the last
decade has seen extensive efforts being devoted to the study of the
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static and dynamic behavior, failure mechanisms, design, and
manufacturing improvement of such structures [1-18]. In spite of
this fact, a detailed review of the literature reveals that most of the
researchers have based their work on the noncompressible core
model, in which the rigidity of the core in the thickness direction is
assumed infinite; that s, it is transversely incompressible. Depending
on whether or not the shear effects are considered, this model is also
referred to as the classical model or the first-order shear model,
respectively. This analytical model was proposed in the 1960s [1,2]
and is simple for practical use. Its assumption is acceptable for most
cases in which the sandwich core is stiff and the loading is static.

However, when the core is soft compared with the faces of the
sandwich structure, the incompressible model may not be
appropriate. As a matter of fact, recent numerical simulations [3]
and experimental results [4] show that the core is under significant
nonlinear deformation when a sandwich structure is subject to
underwater blast loading. Because the classical or first-order shear
models do not account for the core transverse deformation, the
information regarding the transverse stress distribution through the
thickness cannot be properly obtained. The absence of such
knowledge may lead to inaccurate prediction of the failure modes,
such as the debonding between the faces and the core, or of the
energy-absorption capacity. To fill this gap, Hohe et al. [5] proposed
an approximate model with constant transverse strain in the core.
Furthermore, Frostig et al. [6] proposed a model with linear
transverse strain through the thickness of the core, but this model was
formulated as a one-dimensional model (i.e., for a beam). However,
when a sandwich structure is subject to severe loading such as that
induced from blast loading or impact, the core could undergo highly
nonlinear transverse deformation [3,4]. Therefore, a new analytical
but practical (i.e., easy to be implemented) high-order compressible
core model that can take this nonlinearity into account would have
significance in the study and design of sandwich structures.

The accuracy of any of these models can be readily assessed
because an elasticity solution exists. Indeed, Pagano [7] presented
the three-dimensional elasticity solution for rectangular laminates
and sandwich plates for the cases of 1) a phase with negative
discriminant of the cubic characteristic equation, which is formed
from the orthotropic material constants, and 2) an isotropic phase,
which results in a zero discriminant. The roots in this case are all real
and unequal (negative discriminant) or all real and equal (isotropic
case). In a recent paper, Kardomateas [8] presented the
corresponding solution for the case of positive discriminant, in
which case two of the roots are complex conjugates. This is actually a
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case frequently encountered in sandwich construction, in which the
orthotropic core is stiffer in the transverse than the in-plane
directions.

In this paper, we present an advanced new high-order core model
in which the transverse displacement within the core is no longer a
constant, but it varies as a fourth-order function of the transverse
coordinate. The in-plane displacements of the core are fifth-order
functions of the transverse coordinate. The transverse compressi-
bility and shear deformation of the core are incorporated into the
constitutive law. To verify the current model, a study of a typical
sandwich plate with elastic orthotropic phases subject to transverse
loading is performed. The results are obtained using the elasticity
solution [7,8], the classical model [1,2,9], and the first-order shear
model [1,2,9]. The comparison among these results is made to
illustrate the validity of the current model. We should note that the
linear core strain model in [6] was presented for beamlike sandwich
panels and no formulas for plates are available; furthermore, the
constant-core-strain model assumptions were outlined in [5], but no
explicit equations that can be readily solved for the displacements
were presented; therefore, a comparison with the linear model in [5]
was also not possible at this point.

The sandwich structures considered here are composed of two
composite/metallic thin face sheets of high mechanical properties
separated by a thick soft core. Transverse compressibility of the core
will be taken into account. In the development of the high-order core
theory, the following assumptions will be adopted:

1) The face sheets satisfy the Kirchhoff-Love assumption, and
their thicknesses are small compared with the overall thickness of the
sandwich section. In the current study, the two face sheets are further
assumed to be identical.

2) The core is compressible in the transverse direction: that is, its
thickness may change.

3) The bonding between the face sheets and the core is assumed to
be perfect.

The paper is organized as follows: In Sec. II we develop the new
high-order compressible core theory. In this theory, the transverse
displacement of the initial midplane is considered as an unknown
function of the in-plane coordinates (x,y). The in-plane and
transverse displacements in the core are then expressed as functions
in terms of the displacements of the two face sheets and the
displacement of the core initial midplane. In the derivation, the
displacement continuity conditions at the interfaces between face
sheets and the core are employed. In Sec. III we present the derivation
of the governing equations and associated boundary conditions for
the sandwich plate. Subsequently, the equations for orthotropic
sandwich plates are presented in detail. In Sec. IV we outline the
solution procedure to solve the nonlinear equations by applying this
theory to a simply supported sandwich plate under transverse
loading. In Sec. V we present the numerical results for a typical
sandwich-plate configuration. The comparison of the results with
those from the elasticity solution, the classical model, and the first-
order shear model is also given in this section. In Sec. VI we give
some conclusions and suggestions on future work. For completeness,
the governing equations for the classical model and the first-order
shear model are given in Appendices A and B.

II. Derivation of the New High-Order Shear Theory

In the following, we consider a sandwich plate with two identical
face sheets of thickness f and a core of thickness 2¢ and let a Cartesian
coordinate system (x,y,z) be on the middle plane of the core, as
shown in Fig. 1. The corresponding displacements are denoted by
(u, v, w). We further use the superscripts ¢, b, and c to refer to the top
face sheet, bottom face sheet, or core, respectively, and the subscript 0
refers to the middle surface of the corresponding phase.

A. Displacement and Strain Representation for the Face Sheets

The face sheets are assumed to satisfy the Kirchhoff-Love
assumptions, and their thicknesses are small compared with the
overall thickness of the sandwich section. Therefore, the
displacements for the top face sheet are expressed as

TOP FACE SHEET

CORE

Fig. 1 Definition of the geometrical configuration for the sandwich
plate.

u'(x,y,z) = uh(x,y) — (z +c+ g) w'(x,y) (1a)

vy =i = (s+ e+ Hunwn  aw

w’(x,y,z)zw’(x,y), _(C+f) <z=<-c (IC)

and for the bottom face sheet,

ub(x,y,z):ug(x,y)— (Z_C_g)w,bx(x7y) (za)

v (x,y,2) = v§(x,y) — (z —c— g) wh (x,y) (2b)

wh(x,y,2) = w(x,y), c<z=(c+/) (20)

Omitting the superscripts ¢ and b, the nonlinear strain
displacement relations for the face sheets can take the following
form:

€xx €ox +§k,\ f

A= | e |=le+tli=| o+t | g=zx(c+])
Viy Vory + Sksy

(3a)

in which the £ sign in the variable ¢ corresponds to the top and
bottom face sheets, respectively, and [€,] is the middle surface strain
given by

1,2
€ox Ug x + Ew,x
— — 1,2
[eol=| €, | = Vo, + W5 (3b)
y()xy uO,y + Vo.x + w,xw.y

Moreover, [k] is the curvature

kx —W xx
(= k | =] —w,, (€]
k —2w

B. Displacements and Strains for the High-Order Core Theory

In practice, the core can be deformed in the transverse direction
when a sandwich structure is loaded. As a first-order approximation,
this deformation may be neglected, as is the case in the classical
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sandwich model. But in many instances it is necessary to include the
transverse deformation. For example, the transverse deformation
may be crucial in the energy-absorption capability of a structure
subject to extreme loading such as blast loading. To capture the core
transverse compressibility, we can use a higher-order series
expansion in terms of the transverse coordinate to represent the in-
plane and out-of plane displacements. In the current study, the
transverse displacement in the core, w¢, is of fourth order in the
transverse direction z:

w(x,y,2) = |:ﬂ0 B (26)2 — B4 (2 ) ] 5(x,y)
|:ﬂ2 (2 )2 + /34 (2 )4] ()C, y)
[ﬁl +B; 207 }w(x,y), —c<z=<c (4a)

where w§(x, y) is the transverse displacement of the middle surface
of the core, [B - 4] are constants to be determined, and w(x, y)
and w(x,y) are, respectively, the average and difference of the
middle surface transverse displacements for the two face sheets:

=1w'(x, y) + w’ (x, y)].
' (x, y) — w’(x, )]

The in-plane displacements in the core, ¢ and v, are of fifth order
in z, expressed as follows:

w(x,y)
w(x,y) =

(4b)

u(x,y,z) = u(x,y) + Bs %ﬁ(x,y) + 2£w3(x,y, ) (4o

V3, = 58 0) + Boae 000) + 2w (D) ()

where i(x, y, 1), u(x, y, t), v(x, y, t), and 0(x, y, ) are, respectively,
the average and difference of the middle surface in-plane
displacements for the two face sheets:

i(x,y) = j[uh(x.y) + uf(x, y)].

(4e)
i(x,y) = uh(x,y) — ub(x, y)]

(x, y) = 3[vh(x, y) + vg(x, y), b
v(x,y) = i[vo(x,y) - U()(x!y)]

Therefore, there are seven constants §; (i = 0, 6) to be determined
from displacement continuity, as follows:

For the top-face-sheet/core interface, z = —c,
0y, D = ) L) (52)
_ S
VY Demme = Vh(, ¥) — S W (X, Y) (5b)
wo(x, ¥, 2)| ;= = W'(x,y) (5¢)

For the bottom-face-sheet/core interface, z = c,

(6.3, 2)ome = g (x,y) + gwi@c, y) (5d)
V(s . D)) pme = VG (10 y) + g wh,(x, y) (5e)
we(x, y,2)| . = w’(x,y) (56)

Also, at the midsurface of the core, z = 0,
wé(x, ¥, 2)|=0 = Wi, ) (5g)

Substitution of Eqs. (4) into the seven continuity conditions ()
leads to

ﬁozﬂlzls ﬁ2=—2, /332—4, /34:—8’ :852136:_%

6

Thus, the transverse displacement in the core in this new high-
order core theory can be expressed as follows (fourth order in z):

. A W AT
wr) = (1 = e + (S 5 o

z z
(26 t53 )w(x ),

and the in-plane displacements in the core are (fifth order in z)

—c<z=c (7a)

Wy, = 0y) — S + 2L i) )

ve(x,y, 2) = U(x, y) —fﬁ(x, y) + zzf—cwfv(x,y, 72 (o)

where w§ (x, y, t) is the transverse displacement of the middle surface
of the core.

This leads to the following strain displacement relations for the
core:

1 z 322 7 z 27
egz:(_**'*z_*"‘ )’(X)’) ( +?)WZ(X7Y)

1 3 2 3
+(—+i‘+%+i)wh(x,y) (8a)

1.
Vi = —;u(x,y) + m@w(x,y) + n(D)ws (x,y)
+ (2w (x.y) (8b)

X 1. ,
Vye = —;v(x,y) + m@w'(x,y) + n2 (2w, (x,y)

+ n3(2)wh (x.y) (8¢)
in which
. N z 3\ 22 21\ 2
nl(Z)——(1+;)%+(1+E)42 (1+ )@
5F\
+ (1 +Z e (8d)

_ f 3\ 2 57\

3f\ 2 27\ 22
m(z) = (1+J—C)4—ZC+(1 +2_va)4%+(] +?f)%

5
+ (1 + ) & (86

It should be noted that the core is considered to be undergoing
large rotation with a small displacement; therefore, the in-plane
strains can be neglected.
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C. Constitutive Relations

The equations developed so far can be applied to general materials.
In the following sections, we shall assume that the face sheets are
orthotropic laminated composites and that the core is also
orthotropic. The general stress—strain relationship for any layer of the
face sheets reads as

Oxx Cll C12 CIG €xx
Oy | = Cn Cn Cy || &y or [0]=[C]le] (%)
Txy Cis Cy Cg Vxy

where C;; (i,j =1, 2, 6) are the plane-stress reduced-stiffness

coefficients. With Egs. (3), (8), and (9a) and ¢ defined from Eq. (3a)

as the local coordinate from the midplane of each face sheet, one can

find the resultants for the top and bottom face sheets of a sandwich
)= | N

plate:
112 1,b 12 t.b1[ t.b
= [0"°]d¢ = [C*][e*]dg
Nt =112 =112
xy

= (Ale’] + (B k) ©ob)

t,b
N

Mtb /2
= | a2 | = [ ol dc = 1B + 0]
Mt'b —f/2
%)

in which the stiffness coefficients are

f/2
[ALP BV D”’]_/f/zc,.,x{l,g,gz}dg, i,j=1,2,6 (9d)

ij =iy

Applying a similar procedure, one can obtain the following
resultant expressions for the bottom face sheet:

[N*] = [A"][eG] + [B"][K"] (%e)

[M"] = [B"]l€5] + [D"][k’] (9f)

with the stiffness coefficients reading as

"
w08 = [ ey x e =126 G

The stress—strain relations for an orthotropic core can be written as

Uzcz = Ecegz’ = G;zy)gzv T;z = G;:V;z (10

III. Governing Equations and Associated
Boundary Conditions

The governing equations and appropriate boundary conditions can
be derived using the variational principle. The sandwich plate is
assumed to be subject to a transverse loading g(x, y) on the top face
sheet. Let the strain energy be denoted by U and the external work by
W, then the variational principle states

S(U—-W)=0 (11a)

in which

b a —c
sU = / / |: / (0, 8€k, + 03, 8¢€, + T, 8y4y) dz
0o Jo L/-c—f

C
+ f (05,85, + 1585, + T0.8Y5) dz

c+f
+ / (02.8¢b, + b 8eb, + 22,870 dz] dxdy (11b)

b a
SWZ/ / q(x,y)éw' dx dy (11c¢)
o Jo

The governing differential equations and the boundary conditions
can be obtained by substituting the stress—strain relations (9) and
(10), strain displacement relations, and displacement profile
relations (7) and then employing integration by parts. This results in
seven equations: three for each face sheet and one for the core. There
are seven unknowns: ub, vh, w', wg, uf, vi, and w’.

The equations for the top face sheet can be written as

u u
8”6: N)trx +N)[cy,y +G§z|:_%+* 0/\ +O{0(w + U)X)i|

15
—0 (12a)
W —vp) »
Svjy: m—i—NéV—|—GV&|: T—I— 15 ws, + ap(w'y + wh)
-0 (12b)

5U)O 'cxvc + 2M§c) Xy + M;‘.yy + (Nfcw,lx)x + (N)lcyw,lx).y
+ ( yxw,y),x + (Niwt‘)\ + zalC(ngw.txx + G::wtw)
+ 2“20(G§zw6,xx + G;.zw(L).,yy) - 20[3C(Gf\:zw€xx + Gifwb\))

- aO[G)Lrlz(u(t),x - ugr) + G$7(v6) - v(b),y)]
E(6] , 358 53

_E (6l we =0 12
2c (21 105" 105" ) ax.) (120

For the core,

Sws: 179E Qwj

11
6 Tosc w'—w') + 12 G (u, — ug,,)

11
+ 15G V5, —

+ Gy (w'y, + wh)] — 2a4c(Gw§ ,, + Gow,,) =0 (13)

U(I;.y) - zaZC[Giz(wfxx + w.bxx)

For the bottom face sheet,

(—uy + ug )
S b. Nh Nh (3
to: Nox Ny G*[ 2c +15

=0 (14)

wOY +oz0(w + wx)]

vy + U
Svb: Nt +Nb, -GS, [M—F— 6._‘,—|—a0(wfy+wﬁ,)]

2c 15
=0 (14b)

Swg: M3y + 2M2y 0y + M3y + (N7W5) o+ (N33
+ ( yxw,y)x + (N\b* ) + ZQIC(G;&U) XX + G;7 vy)

+ ZO[ZC(G;sz.,\‘X + G;zwo.yy) - 2a3c(zew<xX + G;Zwv)’}')

- “o[chz(MZx - ”2 r) + G§z(vf),y - Ug\)]
E° (61 , 358 53

_E° (6L we + 2w} =0 14
2¢ (21 105" T 05" ) (14c)

The constants ¢; (i = 0, ..., 4) in the preceding equations relate to
the ratio of face thickness and core thickness and are defined as
follows:

2 f 29 3B\ 247 (f)?
==+ == 4+ (L)+ = (L) s
=157 =315 630 (2c) tom (Zc) (152)
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37 3T (f\ 383(f)\
% =530 " 630 (2c) 630 (2c) (15b)
1 (f\ 23 (f)
* =530 " 630 (zc) 180 (2c) (15¢)
194 194 (f\ 383 ()
= () (2 1
% =315 1315 (2c) *315 (2c) (15d)

The corresponding boundary conditions at x =0, a, read as
follows:
For the top face sheet,

or N'=N! (16a)

or N., =N, (16b)

w'=w or Nuw'+ M, +Nw,+2M,

+ G¢ oo (uh — uh) + 20, cw’, + 205cwf, — 2e3cwl] = 0
(16¢)

where Q' is the resultant top-face-sheet shear, defined as the integral
of ,, over the top face sheet, and

t
X

w, =W, or M.=M (16d)

For the core,

. 1 -
w§ =W or E(ug — uh) + 200w’ + 200w, + 205 cwh = 0,
a7

where QC is the resultant core shear divided by the core shear

modulus; that s, QC is defined as the integral of 7, /G .. over the core.
For the bottom face sheet,

b=gb or N'=N? (18a)

or Nb =N (18b)

wb =" or Niw’ + M, + Nbwh +2M%,

+ n[ao(uo — up) — 203cw’, + 20ncwf, + 2051cw = QY
(18¢)

where, again, Qi is the resultant bottom-face-sheet shear, defined as
the integral of 7, over the bottom face sheet, and

boor M:=M" (18d)

The tilde accent denotes the known external boundary values.
Similar equations can be written for y = 0, b. For the sandwich plates
made out of orthotropic materials, one can rewrite the set of the
nonlinear governing equations by substituting the stiffness
constants.

For the top face sheet,

82 2
[Atn 92 + A66 P ]”0 + (A + A66) Uo + GL.oaow!,
ub
2—0 + G aguwt, = F} (19a)

11
+ G, — 5 wg, + G,

(A5 +Ake) P 3 o+ |:A§,6 8822 + AL, 3822 gﬁz] + GSopw',
+ Gy T;ws,y + Gy, '2)—‘; + G o, = F, (19b)
|:Dt11 8844 + 2(D}, + 2Dg) ox 824 5+ D5 8844 + 61ch
_ 2a1c(G§, 8822 + Gy, 832 )]w’
[117095E( + 2(x2c(G§& 8822 + G¢, %)}wg
NP
oGS (= ) + G (0 = )
=q(x.y) + F} (19¢)

in which the right-hand sides are nonlinear terms defined as

ﬁﬁ = _Atl 1 wfxwfxx - (Atlz + At66)wfyw,txy - A%6w.txw‘tyy (19d)
ﬁé = _(Aél + Arﬁﬁ)w{xwfxy - Aéﬁw.[xxw,ty - AEwawayy (196)
Fy=Niw') , + (Nw') , + (Vi) + (Njw'y) - (19D

For the core,

15 Gtey - =

ay uf) + GW 5 )
[117095EC + Z(xzc(G; 38 3+ Gy 882 ): w'
a [117095]:: + zazc(Gi aazz + Gy, 38—;2) w” =0 (20)

For the bottom face sheet,

9 PG 9
[t g A 5 o+ A 420 5k

. 11 iz c I
- GSopuwb, — GS, — 3 w, + e ulh — GSapw', = F?  (21a)
02 02 ? G,
(A 66 a 3 +|:Ag6a 2+A223 2 §j|vg
11 G, i N
— oGyl = Gy 2w +2—2v6 —a,GS.w'y = F5  (21b)
ot 9 61E°
[D?‘B T+ 2D +2D6)8 2 2+ ’2728 i I
02 92
-2 G¢. Gy, b
“'C( o ayz)]'”
179E¢ 02 02
[105 +2(x2c(G‘ o -+ Gy, 9y ):|w6
53E°¢ 02 92
+[210 + agc(Gi&a e a—)}w’
0
+ oG, —(uO —ub) + ayGS, — (v — vh) = F; 21¢)

VZa
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in which

Fh=—Abwhuwl, — (A%, + Abwhwh, — Abwlwh,  (21d)

—(A5 + Abwhwb, — Abwh wh, — AL wbwh,  (2le)

= (NYwh)  + (N{wh) y + (Npwh) , + (Nywh) - 21D

IV. Application of the High-Order Theory to a Simply
Supported Sandwich Plate

In this section, the solution procedure for the response of sandwich
plates will be demonstrated through the study of the simply
supported case under transversely applied loading. In this case, the
boundary conditions are as follows:

Forx =0, a,and y =0, b (Fig. 1),

uhy = ub = vh =v5 =0, w' = w’ =0, w;=0 (22a)
and
M, =M’ =0 forx=0,a (22b)
M, =M =0 fory=0,b (22¢)
The displacements can be written in the form
uf = ;U,,m cos—si 'lTify’ O—Z sm—c any
(23a)

nwy b Mmmx Ny
ub = E Um,lcos—smT E Vo sm—co —

b
(23b)
w' = ZW{W sm— sin?,
m,n . (23C)
wh = ZW,ﬁ’m sin ™ sin Ty
wi = W, sin anx sin % (23d)

m.n

where Ut,,, Vi, Ub. Vb Wi Wb and WS, are unknown
constants.

Substituting Eq. (23) into Egs. (19-21) results in F*, F¥ (i = 1,2,
3), and g(x, y) being expressed in the following form:

Fi= Zﬁ,m” cos 7 i %,
m,n
24
B — ZFb nmwy (242)
1= 1mn COS*SI 7
m,n
N nmwy
F} Fom sm—co
2 Z : b
24b
-y m
2mn SlIl—CO T

m,n b
. ny (24¢)
F? = ;F?mn sin ——si 5
niwy
’ mn 24d
q(x,y) = ZQ sin 2 sin b (244d)

Thus, one can obtain the following set of nonlinear equations in
matrix form:

Kmn Umn = Fﬂlll (25)
where the displacement vector U,,, is defined as

t ¢ b b T
mn [Umnv mnq Wmm Wmns Umm an’ mn]

and the loading vector F,,, is defined as
F’\I F’\I F’\/ 0.0 1’;\[7 F’\b F’\b T
[ Imns £ 2mns £ 3mns VY £ lmns £ 2mn» 3mn]

The solution in terms of the displacements to Eqs. (25) can be
obtained without much difficulty if the loading coefficients
{ﬁ;mn, 1:"?,,",} (j=1, 2, 3) are constants. But these loading
coefficients were derived from the expressions (19d—19f) and (21d—
21f), which are nonlinear functions of the displacements. Therefore,
the right-hand side of Eq. (25), F,,, is a nonlinear function of U,,,,,.
However, if the displacements U,,, are known with the known
applied loading Qm,,, making use of Egs. (23), (19d-19f), and (21d-
21f), one can determine the functions 1:"’1 , I:"'z, I:"g, I:“i’, 13“2, and ﬁé’ The
next approximate values of displacements are found by solving
Eq. (25) with the updated loading vector. This procedure is continued
until a series of approximate solutions for the in-plane and transverse
displacements are determined by the nth iteration with a convergence
tolerance € applied on the displacements normalized by the total
height of the sandwich section, such that € < 107> between two
consecutive solutions.

V. Numerical Results and Discussions

In this section, we shall present the numerical results for several
typical sandwich-plate configurations with orthotropic phases. The
results using the elasticity solution, the classical model, and the first-
order shear model will also be presented. The results from the current
high-order theory will be compared with the results obtained from
these models. It should be noted that a comparison is not made with
the Frostig et al. [6] theory, because this theory was developed for
sandwich beams; that is, it is a one-dimensional theory, unlike the
present theory, which is two-dimensional (for sandwich plates). A
comparison is also not made with the linear core strain theory [5],
because although the basic assumptions of the theory were given in
[5], the explicit equations in terms of displacements were not given
and therefore they were not available for direct application.

Let us assume a loading of the form

Ty

. TTX
q(x,y) = qosin—sin—,
a

b 0<x=<a,

0<y=<b (26a)
applied on the top face sheets of the sandwich plates. From Eq. (24d),
one can obtain the following loading in the transformed space:

Q mn = 8»115111 4o (26b)

where §,,, is the Kronecker delta.

Let us consider a sandwich configuration consisting of
unidirectional graphite/epoxy faces with moduli (in gigapascal) of
E/ =181.0, E} = E}, =10.3, G|, = G}, =7.17, and G}; =5.96
and Poisson’s ratios of V1z = v{3 =0.277 and vgz = 0.400. The core
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is made of hexagonal glass/phenolic honeycomb with moduli (in
gigapascal) of E{ = E§ = 0.032, E{ = E{ = 0.300, G{, =0.013,
and G, = G5; =0.048 and Poisson’s ratios of v§, =5 =
v, =0.25.

The two face sheets are assumed to be identical with a thickness of
f =2 mm. The core thickness is 2c = 16 mm. The total thickness of
the plate is defined as &, = 2f + 2c. In the following results, the
displacements are normalized with

7

100h,,, 20
Ey

and the normal stresses with

a2

qo htzul
Plotted in Figs. 2 and 3 are the normalized displacements at the top
face sheets as a function of x at y = b/2 for two plates with a =
b = Shyy and 20h,, respectively. Both the classical and first-order
shear (where shear is assumed to be carried exclusively by the core)
seem to be inadequate, the classical theory being too
nonconservative and the first-order shear theory being too
conservative; this demonstrates the need for higher-order theories
in dealing with sandwich structures. The present high-order theory
gives a displacement profile that is practically identical to the
elasticity solution for a = b = 5h,, and it is very close to the

elasticity solution for a = b = 20h,.
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Fig. 4 Through-thickness distribution in the core of the transverse
normal stress o, atz =a/2 and y = b/2; case of a = b = 20h,,,.

One may further see that the accuracy of the first-order shear
model and the classical model increases as the plate span increases
from a = b = 5h, to 20h,,, in the sense that they get closer to the
elasticity solution. The reason for this observation is that the plate of
a =b =5hy, is a very short/thick plate (it is essentially a three-
dimensional structure, rather than a plate); that is, the shear and
transverse compressibility, as well as their coupling in the sandwich
plate, play a big role in its deformation. Because both the first-order
shear and classical models assume an infinite transverse rigidity, they
can only capture a portion of the total deformation of the plate. But
when the span becomes larger, such as a = b = 20h,, the three-
dimensional effects such as the coupling between shear effects and
core compressibility become less pronounced.

The distribution of the transverse stress in the core, o, as a
function of z at x =a/2 and y = b/2 for a sandwich plate of
a = b =20h,, is plotted in Fig. 4, in which only the values using
elasticity and present high-order model are presented, because the
first-order shear model and the classical model consider the core
incompressible. The minus sign means that the stress is compressive.
Of interest is the surface at z/c = —1, which is the face-sheet/core
interface at the side on which the loading is applied and shows the
highest value of stress. One can see that the nonlinear model gives a
conservative prediction on this peeling stress (the stress that
separates the core and the face along their interface, where a debond
failure often initiates) at z/c¢ = —1. It should also be noted that a
linear high-order model [5], which would imply a constant transverse
normal strain, would subsequently give a nearly constant normal
stress, and therefore it would not be able to capture the large variation
of normal stress through the core thickness, as observed in Fig. 4.
These observations suggest that using the nonlinear model could
help in the safety design of sandwich structures.

VI. Conclusions

In this paper, a new high-order theory for sandwich plates is
presented and explored in detail. In the derivation of the governing
equations and boundary conditions, both the core compressibility
and the core shear are considered. A procedure to solve the nonlinear
equations is also outlined. Numerical results from this theory are
presented for a typical sandwich-plate configuration with orthotropic
phases. These results are compared with those obtained using the
elasticity solution, the first-order shear, and the classical models to
justify the merits of current theory. Observations from the current
work suggest following conclusions:

1) In terms of the displacement profile, the current new theory
gives a prediction that is very close to the exact elasticity value.

2) Current new theory gives a very adequate solution to the
distribution of the transverse normal stress in the core of a sandwich
plate.
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Though the transverse normal stress in the core could contribute to
several failure modes, such as debonding at the interface between
faces and the core, local wrinkling, and core crushing, there have not
been plate-theory-based analytical models that could properly
describe this transverse stress profile in the core of a sandwich plate.
Therefore, this new theory could have wide applications in the
investigation of the behavior of sandwich structures.

Appendix A: Classical Sandwich Model
(Without Shear Effects)

In the classical sandwich model, the core is assumed to be
incompressible in the transverse direction, and the transverse
displacements of the face sheets and the core are considered to be the
same. As such, the governing equation for a plate subject to
transverse loading ¢(x, y) of the top face sheet reads as [1,2,9]

*w(x, 0*w
Dy, 8()2 Y) +2(Dy5 + 2Dg6) 2((‘); g)
d
+ Dzzw 4(x.) (A

where the stiffness matrix is defined as

Di;=Cy2fE +2f2c+3f%) or Dy;=2C;fc* if f<c

(A2)

For a simply supported rectangular plate, the transverse
displacements can be expressed as

w(x,y) = ZWW, sm—ﬂ n Y (A3)

b

m.,n

and the load can be expressed in the same manner as in Eq. (24d).
Substituting the preceding expression into Eq. (A1) leads to

Wmn = an/|:Dll (”;T[) + 2(DIZ + 2D66) (mﬂ)z(%)z
+ D, (%)4] (Ad)

Appendix B: First-Order Shear Model
If we let @, be the shear deformation in the x direction and &, be the
shear deformation in the y direction, then the governing equations
with shear effects can be written as [1,2,9]
ad
KDSS (O[ —+ aw) 0

0’a, 0’a, v
Dy — 02 >+ Dgs = 9y +(D12+D66)

(Bla)
0%, 0%a, _ ow

(D, + Doe) + Do —— e F+ Dy — 3y z KD44(% + E) =0

(B1b)

da, ow da, 9
KDSS(;‘ +a—)+x1)44(3“ +a—w)+q(x y)=0 (Blc)

where k = 72/12 or k =5/6 is the transverse shear factor, the
bending stiffness matrix is defined as in Eq. (A2), and D4, Dss are
the shear stiffness constants, defined as

Dy, =2G¢,c, Dss = 2GY.c (B2)

Notice in the preceding equation that we have assumed that the
shear is carried exclusively by the core. For a simply supported
rectangular plate, the solution to Egs. (B1) can be set in the following
form:

w(x,y) = ZW'"" sin ™ gin "bﬂ (B3a)
&)= A cos? sinn% (B3b)
a,(x,y) = ZBW, sin?cos? (B3c)

m,n

and the load can be expressed in the same manner as in Eq. (24d). If
we set

Ap=—r,  Ay=— (B4a)

Ly, =Dy A}, + Deshy +kDss, L, =(Dy, + Dgg)A, A, (B4b)

Ly = Deshy, + DAy + kDyy. L3 = kDssA,, (B4c)

Lz = kDssA2, + kD A2, Loy = kD gy, (B4d)

then substituting Eq. (B3) into Eq. (B1) leads to

Ly Ly Ly A 0
Ly Ly Lxn By, | = AO (B5)
Ll3 L23 L33 Wmn an

which yields the solution

Ql‘l”’l
Ay = (LypLoz — LypLy3) —— (B6a)
— an
By = (LiaLys — LiiLy3) == (B6b)
2 an
mn (L]1L22 LI2) (B6C)

where A is the determinant of matrix [L]. Note that this shear model is
similar to the Timoshenko shear beam model.
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