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ABSTRACT

The stability of equilibrium of an orthotropic thick cylindrical shell subjected to exter-
nal pressure in a hygroscopic environment is investigated. In this approach, the structure is
considered a three-dimensional elastic body rather than a shell. First, a fundamental anal-
ysis that formulates the basic buckling equations with the appropriate boundary conditions
in the elasticity context is performed. Subsequently, the critical loads for pure mechanical
loading (external pressure) are derived. Following this benchmark analysis, the particular
emphasis is placed on examining the effect of the boundary-layer transient hygroscopic
stress field on the critical load. Constant moisture concentrations on the inner and outer
surfaces are imposed in addition to the external pressure. Since the moisture diffusion
process is relatively slow, the hygroscopic stresses are confined for practical time values
to a boundary-layer region near the surfaces. The analysis first uses the series expansion
for the Bessel functions for small arguments and then the Hankel asymptotic expansions
since an increasing number of terms is found to be needed. Compared to the classical
shell theory approach, the results of this research show that the shell theory predictions
on the critical load can be highly non-conservative when moderately thick construction
is involved. However, the hygroscopic boundary-layer has a negligible influence on the
critical load.

INTRODUCTION

A class of important structural applications of fiber-reinforced composite materials
involves the configuration of laminated shells. Although thin plate construction has been
the thrust of the initial applications, much attention is now being paid to configurations
classified as moderately thick shell structures. Such designs can be used in components in
the aircraft and automobile industries, as well as in the marine industry. Moreover, com-
posite laminates have been considered in space vchicles in the form of circular cylindrical
shells as a primary load carrying structure.

213



In these light-weight shell structures, loss of stability is of primary concern. This
subject han been researched to-date through the application of the cylindrical shell theory
(c.g. Simitses, Shaw and Sheinman, 1985). However, previous work (e.g. Pagano and
Whitney, 1970) has shown that considerable care must be exercised in applying thin shell
theory formulations to predict the response of composite cylinders. Besides the anisotropy,
composite shells have one other important distinguishing feature, nunely extensional-to-
shear modulus ratio much larger than that of their metal counterparts.

In order to more accurately account for the above mentioned effects, various mod-
ifications in the classical theory of laminated shells have generally been perforined (e.g.
Whitney and Sun, 1974; Librescu, 1975; Reddy and Liu, 1985). These higher order shell
theories can be applied to buckling problems with the potential of improved predictions
for the critical load.

Towards the objective of producing an solution based on three-dimensional clnsticity
to the problem of buckling of composite shell structures, against which results from various
shell theories could be compared, this work presents an clasticity solution to the problem
of buckling of composite cylindrical orthotropic shells subjected to extemal pressire. Nu-
merical results for an example case of a fiber reinforced hollow cylinder under external
pressure are derived and compared with shell theory predictions. _

Another important requirement for the confident application of these structural de-
signs in severe hygroscopic environments is the adequate understanding of the influence
of the environment, and in particular the cffect of the stresses induced by moisture. It is
well-known that a polymeric resin absorbs moisture from its environment. In this context,
Wang and Choi (1982) suggested that an unanticipated failure of a composite structure,
frequently initiated at the edges, can be a result of hygroscopic stresses near the edges.

Although the majority of hygroelastic analyses have been performed in plate struc-
tures, some studies have also been reported in thin shell geometries. In particular, Doxce
and Springer (1989) analyzed hygrothermal stresses and strains in an axisymmetric comn-
posite shell according to their higher order shell theory. It should be emphasized that just
as the classical lamination plate theory cannot predict the boundary-layer hygroscopic
stress ficld in plate geometries, the classical shell theory cannot capture these highly local-
1zed stresses in shell geometries.

Concerning the influence of hygroscopic fields on the point of stability loss, Snead
and Palazotto (1983) used the finite element method to investigate the moisture and temn-
perature cffects on the instability of cylindrical. thin composite panels subjected to axial
loads. They concluded that the bifurcation load will be degraded as moisture concentations
and temperatures incrcase and also these are influenced by the panel’s ply orientations.
Lee and Yen (1988) did work with the similar problem to Snead and Palazotto’s (19S3).
They included the effects of the transverse shear deformations to the classical shell theory.
On the basis of their finite element analysis, their results are consistent to Snead’s and
Palazotto’s (1983).

In this work, the influence of transient hygroscopic stresses on the critical point of a
hollow orthotropic circular cylinder loaded by external pressure is examined. It is assumed
that both the inner and outer surfaces are at constant (but different) concentrations of
moisture. The material properties are assumed independent of the concentration of mois-
ture. The elasticity solution produced in this paper provicfes accurate results for certain
simple configurations, but, more importantly, forms a basis for comparing various shell
theories that could be potentially used for more complex geometries.

FORMULATION

Let us consider the equations of equilibnum in terms of the second Piola-Kirchhoff

stress tensor B in the form

div(E.FT) =0, (1a)
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where F is the deformation gradient defined by
F=1+grad?, (18)

where V is the displacement vector and 1 is the identity tensor.
Notice that the strain tensor is defined by

E=_(FT.F-1). (1c)

1
2

More specifically, it terms of the linear strains:

e = Ou 10w u —_ Ow 9
rr"ar» Cll—r‘a_9+r' “—62‘ ('-“)
. _13u+6v_v _6u+6w _O6v 10w -
rd = 7‘69 ar = ) Crz = 62 (91" y Co, = az e ag ’ (- )
and the lincar rotations:
10w Jv Ju Ow v v 10u
Yy T = e — — = — = — = — — —a—— 9
oy rdé Oz’ 2o o0z Or'’ 20, or 1 r rof’ ()
the deformation gradient F is
l4e, lerg—w: le+ws
F=|Jestw, ltew zeo—w, (3)

1
2€r: —We 3€4; +wr 1+e;.

At the critical load there are two possible infinitely close positions of equilibrium.
Denote by ug, vy, wy the r. § and z components of the displacement corresponding to the
primary position. A perturbed position is denoted by

u=ug+au,; v=vy+av,; w=wy+oaw , (4)

where a is an infinitesimally small quantity. Here, au,(r,8,z), avi(r,6,z), aw,(r,0,z)
are the displacements to which the points of the body must be subjected to shift them
from the initial position of equilibrium to the new equilibrium position. The functions
uy(r,0,z), vi(r,0,z), wy(r. 8, z) are assumed finite and a is an infinitesimally small quantity
independent of r, 8, z.

Following Kardomateas (1993), we obtain the following buckling equations:

d 10
, 3 (or, — Thewl + Towp) + e (76 — Opew’s + To,wp) +
1 ;)
+57 (T - Towh + 00 wp) + (o, — 00 + Ty + 1o — 277)) =0, (5a)

7] 10
E_' (T:O + agrw: - T:wa:) + ;—a_g- (0’00 + Tr"’"": - Tgxw:') +

1
0 0
+57 (T + 1w = olwl) + = (27 + 00 w] — oo, + oy — TPw)) =0, (5b)

10
By (Tre = Onwp + 1re) + ~ 25 (o — 7lpwe + oggr) +

7]
+E (o:x - T?,w'. + rg,w:) + ; (T:, - 02"‘)‘ + rgl“‘"r) =0. (SC)
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In the previous equations, a?, and wf arc the values of 0, and w, at the initial
equilibrium position, i.e. for u = ug, v = vo And w = we, md oy, and ....-; arc the valuces at
the perturbed position, i.e. for u = u;, v = v and w = w,.

The boundary conditions associated with (1a) can be expressed as:

(FET).N = V), (6)

where £ is the traction vector on the surface which has outward unit normal N= (l-,vii, n)
before any deformation. The traction veetor { depends on the displacement field V =
(u,v,w). Again, following Kardomateas (1993), we obtain for the bounding surfaces:

(0%, = 70w, + T0wl) L+ (g = 03¢l + 7o) 11+

4 (1], — 1w + 00 wp) i = pluwim —wen) (7a)

(o + 0wy = Tr0)) I+ (05 + Trow's — Tguy) T+

ez r2¥r

+ (1o, + Touw; — oS, w )= —p (u:i— u:,r'l) , (7b)

(71, + 700 = 0%s) 1+ (74 + 03, = 70g) 10t

I

+ (0% + 9wl — fou,) n=p (w',i-—u',rh) . (7¢)

Since for the lateral surfaces m = n = 0 and =1,

Opp = Trgwy + Ty =0, (8a)
T:-O + a?‘ru; - Trl-):“‘"':' = ‘P“-’: ’ (81')
T:‘X + Tf"?“”r - o?rw’ﬂ = P“"o » (SC)

Pre-buckling State. The problem at hands is that of a hollow cylinder nigidly fixed
at its ends and deformed by uniformly distributed external pressure p (Fig. 1). The
cylinder has an inner radius, r; and an outer radius. r;. The radial, circumferential and
axial coordinates are denoted by r, 8 and z, respectively. It is assumed that the initial
concentration (at t = 0) is Co. For t > 0, the boundaries r = r; and r = r; are kept at
constant concentrations C, and C;, respectively. The reference concentration is taken as
zero. The moisture problem is solved by the Fickian diffusion equation:

_aC(r.t) = D’l"2 ("a—c) ry<r<nr;

ot ror or =0 =D (9a)

where C(r,t) is the moisture concentration and D is the moisture diffusivity of the com-
posite in the r direction. The initial and boundary conditions are

C(r,t =0)=Cy rn<r<r;, (9b)

C(ry.t)=C, and C(r;,t) = C; t>0, (9¢)

where Co, €y and C; arc constants. Crank (1975) gives the general solution for the
distribution of the concentration of moisture C(r,t) to Eq. (9) in terins of the Bessel
functions of the first and second kind J, and Y, as follows:
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Clrt) =byIn(r/ry) + byIn(ra/r) + Y [eado(ran) + daYo(ras)] €22t | (10a)

n=1
where c c
b, = —2 5 = —0__ ’ 106
" In(ra/r1) b In(rz/r1) (108)
& = #Jo(r1an)Yo(r2an) (Co _ CaJo(rian) — ijo(rzﬂn)) (10¢)
Jg(r,a,,)+Jo(rga,,) Jg(rla,.)—Jo(rga,,)
Jo(rzﬂn)
d, = —————c¢,, 10d
Yo(r'lan) ( )
and a, are the positive roots of:
JO(rlan)YO(rZOrl) — Jo(r2an)Yo(rian) =0 . (10e)
The hygroscopic stress-strain relations for the orthotropic body are
Ory €1y Cj2 Ci3 0 0 0 €rr — ﬁ,-AC
Tg0 €12 €22 C23 0 0 0 €99 — IJGAC
Or: — €13 €23 €33 0 0 0 €. — B.AC (11)
Té: 0 0 0 Cq4 0 0 Yo: !
Tr: 0 0 0 0 cs O Yre
Tre 0 0 0 0 0 Cé6 Yré

where ¢,; are the elastic constants and §, the swelling coefficients (1, 2 and 3 represent
r,0 and :, respectively). The geometry (Fig. 1) is axisymmetric. Since the moisture
concentration is assumed to depend only on the r direction, the stresses are idependent
of @ and : and the hoop displacement is zero. In addition to the constitutive equation (11},
the equilibrium equations have to be satisfied; since 7,94=7,,=79,=0, only one equilibrium

equation remains:
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oorr Orr — 0o
or r
In this work the displacement ficld derived by Lekhnitskii (1981) for time-independent
problems and modified hy Kardomateas (1989) for time-dependent thennal stress problems
(which are analogous to the time-dependent moisture-induced stress problems) is used:

=0. (12)

u, = U(r, 1)+ 2{w, cos @ — 1w, sin ) + ugcos @ + vgsinf |

up=—z(wysind + w, cosf) + w,r — ugsinf + vy cos b , (13)
u, = 2f(t) = r(w, cos 8 — w, sinf) + uy ,

where the function U(r, t) represents the radial displacement accompanied by deformntion.
The constants ug, vg and wyg denote the rigid body translation along the x, y and 2
directions in the Cartesian coordinate system, respectively, and w, wy, and w, denote the
rigid body rotation in the x, y and z dircctions (these may also be functions of time, but
since they do not appear in the strain expressions, such a dependence would not affect the
expressions that follow in this section).

The parameter f(t) is obtained from boundary conditions. The strains are expressed
in terms of the displacements as follows:

oU rt U T,t
trr=%) €gg = (T )y (xxzf(t)~
Yé: =7xr=7rl=0- (14)

Since the structure is assumed, for simpliaty, fixed at the ends, f(t) = 0. Notice that
this is a difference with the boundary condition of axial force developed due to the pressure
at the ends, which was assumed in the boundary-layer hygroscopic stress ficld study by
Kardomateas and Chung (1993).

Substituting Eqs. (14) and (11) into the equilibnum Eq. (12) gives the following
differential equation for U(r.t):

o 67g£:,t) . %au(;:,t) B Cr’—fL-‘(r,t) — ac(;:,z) . C(:,t) ’ (15)
where
@ =cn S, + 1230+ ci3Bs (1Ga)
92 = (1 — 12)Br + (€12 — €22)Bo + (€13 — c23)B: . (16b)
To solve Eq. (15), set
U(r,t) = Us(r) + i Ra(r)e Pt . (17)
=

Substituting Egs. (10), (16) and (17) into Eq. (15) yields the following cquations to be
satisfied for Up, and R, forn =1,2, ... o0: -

b - In |
enlUg(r) + i:_—l o(r) = ‘;_L;Uo(r) =q l - b + q25 (rr/rl) + q25, n(r:/r) ., (18a)

TR - BR(r) = |@ — qandi(ran)| +

Jo(ra,
CHR:(")+ —0(:0 )

218




Yo(ra,)

r

+dn q2

- q1aaYi(ra,) n=1,...00. (18%)

For each of the previous equations, the solution is the sum of a homogeneous solution
and a particular one. The solution of the homogeneous equation is in the form G, (t)r™

+G(t)r** with
Al,: = :tv sz/C“ . (186)

Now set G,(t) in the form: G,(t) = Gio+ EG,‘,.C—D.:‘, i=12

Since the constants G,; are yet unknown, we shall indicate the places where they
enter in the expressions that follow (these constants are found later from the boundary
conditions). For ¢;; # ca22 the solution of (18a) for Up(r) is

Uo(r) = Gror™ + Gaor* + Ug(r) , (19a)

where

. _ @b q2b; [‘h(cu —c22) - 2026111
Uu(r) - € - Curln(r/r,) + €1 - "/nrln(”/r) * (enn — ‘—'22)2 - 62229.6)

For ¢;; = ¢32 the corresponding solution of (18a) is given in the expanded paper by
Kardomateas and Chung (1993) with fo = 0.

To solve (18b) we usc the series expansions of the Bessel functions to obtain a series
expansion of the right-hand side, as given in Appendix I of Kardomateas and Chung (1993).
In the following, 7 stands for the Euler’s constant (~ 0.577215...).

For ¢;1 # ¢32, the solution is:

Ra(r) = Gyar™ + Gaar* + Ry(r) | (20a)
d = =)

R;(r) = Boar + Lrlﬂ(ra,./?) + 3 Biar™**In(ran/2) + Bour™*? , (200)
w(cnn — e22) k=0

where Bon, Bink and B;qi are given explicitly in Kardomateas and Chung (1993).

The series expansion for the Bessel functions cannot be used for large arguments;
hence, the requirement of including an increasing number of terms and therefore large
arguments, necessitates finding a particular solution for the “large arguments” domain.
This is achieved by using the Hankel asymptotic expansions of the Bessel functions of the
first and second kind. Employing the substitution

p=ran; RI(p)=Ry(r), (21a)

gives the following equation for R:*(p)

2 ((pee R:1(p) R(p) _ 5~ (=D'antn(k)
e (R" "(”)+T)_°”°3' 7 = 2 R8s s

X {(c,. +d,)(g28inp — @y kpcos p + az i p’ sin p)+
+ (cn — dy)(g2cosp + @y kpsinp + az;p2 cosp)} : (21d)

The solution of the above equation for the function R;*(p) is found to be

o0
RYy(p) =) plap ™ VP cosp+s] 07 " sinp+
k=m0
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+p:'2p—u—a/2
The cocfficients p} | s |, p} 4, 37 ; arc determined by considering the terna in the sum
that contribute to the terms p~2¥" /2 cosp, p~2*-1/2 gin Py p~ Y2 conp, p~ =3 ginp
in the right hand side of (21b). Recursive formulas for pJ |, a7, and for pp ,, 87, arce
thus obtained, and these are given in Kardomateas and Chung (1993) (along with the
definitions of a, i, a; 4 and v, (k) in the previous formulas).

Notice that since both these solutions for the different domains (i.e. scries expansion
or Hankel asymptotic expansion) are particular solutions a homogeneous solution term is
added at the transition point as is discussed in the latter reference.

Thus, the expression for U(r,t) satisfying the equlibrium equations is obtained with
the unknown coefficients G¢, and G39; G4 8nd Gz, for n = 1,2.... These cocfficients
arc detennined from the following boundary conditions:

cosp+a],p7 "M gingp . (22)

o, (r,t)=0, or(rat)==p; Tr(rat) =71.,(r,,t)=0, 1=1,2. (23)

where p is the external pressure. Only those for the stress o,, are not identically satisfied.
The stress o,, on the boundanes is written in terms of the displacement field:

U(r..t)
r

Orr(riyt) = eniU (rit) + €12 -qC(ri,t), 1=12, (24)

Substituting Eqs. (10), (16). (17) into (24) for U (r) gives the following two lincar equations
for G]g and G?D:

(e + Clz)Tf\'—lGlo + (c1122 + Cn)"f\’—lczo =

L) 4 gy by lnrifr) + baln(ra/r) 490 =12, (250)

T

= —enUs!(r:) — ez
where p, = 0,ati=1;p; = —pat1 =2

In a similar fashion, by substituting the expressions for R,(r), there correspond two
linear equations for G,,, G2, for n = 1,...00, as follows,

(en1Ar + c,z)r?‘_’G," + (e X2 + Cn)"?’_lczn =

R(ri)

T

+ g1 [endo(rian) + dnYo(riaa)] 5 1=12. (25b)

= —cnuR/(ri) — c12

Therefore the constats G;; and hence the displacement U can be found by solving
(25). After obtaining the displacement field, the stresses can be found by substituting in
(14) and (11).

Perturbed State. In the petrurbed position we seek plane equilibrium modes as follows:
ui(r,8) = Ap(r)cosnf; vi(r,0) = Ba(r)sinnf; w(r.0)=0. (26)

As discussed in Kardomateas (1993). we can use for the first order strains the simple
linear strain expressions. Therefore,

-

6, =An(r)cosnf , (27a)

o = 2D 2080 g, (278)

B.(r) 4+ nAn(r)

r

vie = | Bu(r) - sinnf | (27¢c)
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=Y =7 =0, (274)

and the first order rotations are

ot = | D7 gr) 4 Balrd F nda(r) “Lr""'(') sinné , (27¢)
we=w,=0. (27/)

Dernote Ag)(r), Ef."(r) the i-th derivative of A.(r), Ba(r) respectively, with the no-
tation AY)(r) = An(r) and B (r) = Ba(r). Substituting into the buckling equations
(5) and using the constitutive relations, we obtain the following two linear homogencous
ordinary differential equations of the second order for A,(r), Ba(r):

2
> AL (r)r? [dio + disade(r,tip)] +

=0
l . y
+3 BOP T [go + quogy(rtip)] =0,  r<rs<n (28a)
=0
2
ZBs.i)Ti_z [bio + byl (r,t;p)] +
=0
l . .
+ Z ADr T [fio+ fuol(r,tip)) =0, rSr<n (28b)
1=0
where - U
or(r t;p) = cn (r.t:p) + c12 (r.tip) - qC(r,t), (29a)
or ro
aU(r, t; U(r,t;
Shalritip) = ey D CEE) o 0 DGB) (g gy, (298)

In terms of ¢ = r;/r;, the expression of U(r,t;p) is in the form

U(r,t;p) = (Uar + pUar )™ + (Uez + pUaa)r ' +

+Ug(r) + 3 7P [Grar™ + Ganr™ + Ri(r)] (29¢)
n=1
Notice that Uj(r), Ry(r), Gyn and G, are not dependent on p, and in fact the relationship
(29c) gives whatever dependence on p exists (which is linear). This is important because
in the numerical implementation that will be described shortly, derivatives of 02, and o),
with respect to p are needed, and these are found directly from (29) without a need for a
numerical differentiation.
The boundary conditions (8) are written as follows:

AL(r,)en + [An(ry) + nBa(r;)] fr‘—’ =0, j=12 (30a)
J

B'(r}) [(c“ + ?2—’) + %ofr(r,-)] ¥

iy 1 1 .
+[Bn(r,-)+na.<r,-)l[(—c..+”—2');;+2—rla2,(r,-)]=0. i=1,2  (300)

2



where p, = p for j = 2ie. r = r; (outside boundary), and p; = Oforj = lic. r =1
(inside boundary).

The constants d,;, 95, bijy fij in the above equations arc given in Appendix I of
Kardomatcas (1993) and depend on the material stiffncss coefficients ¢,; and the constant
n.

For a fixed time, equations (28) and (30) constitute an eigenvalue problem for ordi-
nary sccond order lincar differential equations in the r variable, with the applied external
pressure p the parameter. This is essentially a standard two point boundary value problem.
The relaxation method was used (Press et al, 1989) which is essentially based on replacing
the system of ordinary differential equations by a set of finite difference equations on a grid
of points that spans the entire thickness of the shell. For this purpose, an equally spaced
mesh of 121 points was employed and the procedure turned out to be highly cfficient with
rapid convergence. As an initial guess for the iteration process, the shell theory solution
was used. The minimum eigenvalue is obtained for n = 2. An investigation of the conver-
gence showed that essentially the same results were produced with twice as many mesh

points.

RESULTS AND DISCUSSION
As an illustrative example, the critical pressure was determined for a composite cir-

cular cylinder of inner radius r; = 1m. The moduli in GN/m? and Poisson's ratios uscd
(typical for a glass/epoxy material) are listed below, where 1 is the radial (r), 2 is the
circumferential (8), and 3 the axial (z) direction: E; = 14.0, E, = 57.0, E3 = 14.0, G2 =
5.7, GZJ = 57, G31 = 50, Vi = 0068, Va3 = 0277, Vi) = 0.400.

Figure 2 shows the critical pressure as a function of the ratio of outside vs. inside radius
r7/r1 (pure mechanical loading). The elasticity solution is compared with the predictions
of classical shell theory (e.g. Ambartsumyan, 1961).

The direct expression for the critical pressure from classical shell theory is:

=z L (31)

gy = e e i e e |
p ,0‘! (1_1’23!,32)( )12R3

where R = (r; + rz)/2 is the mid-surface radius, and h = r; — r; is the shell thickness.

20r
[
o
(&)
e 15|
3
. Shell Theory
o
-
o
] 19
Q
=
(8]
0s
°'° L A J
1.0 1.1 1.2 1.3 1.4 1.8 1.6 1.7

R2/R1

Fig. 2. Cnti : cal g
14 Critical prclssurc,' Per VB rat_xc'> of outside/inside radius, Ry/R,. Comparison of
the three-dimensional clasticity and the shel] theory predictions
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The previous value can be found by using the Donnell nonlinear shell theory equations
(Brush and Almroth, 1975) and seeking the buckled shiapes in the form (26) where A,(r) =
An, i.e. it is now a constant instead of function of r, and B.(r) = B, + (r — R)# with B,
being a constant, i.c. it admits a lincar variation through the thickness. Since § = (v —
uy,0)/ R, the latter can also be written in the form B,(r) = B, +(r - R)(B, +n)/R. Natice
that the classical shell theory would be unable to capturc the effect of the axisymmetric
moisture stress field because of the assumption of constant radial displacement, U(r).

For a more specific comparison of the results for a range of radii ratios that would
probably constiiute practically moderately thick to thick shell construction, Table 1 shows
the values of the critical load, as derived by the present elasticity formulation and the shell
theory predictions for the orthotropic material. A similar comparison is performed for the
1sotropic case in Kardomatcas (1993).°

Concerning the effect of the hygroscopic boundary-layer stress field on the critical
load, the same geometry and material is used. The typical values of hygroscopic expansion
cocfficients (e.g., Hahn, 1976) are: B, = 8, = 6.67x1073/wt%, B = 0. For this material,
the moisture diffusivity in the radial direction is D = 2.145x107** m?/scc. This value
was obtained by substituting a temperature of 50°C to the equation for the temperature-
dependent moisture diffusivity in Hahn (1976).

Table 2 shows the critical pressure with the effect of the hygroscopic effects included
at a normalized time {=Dt/(r; — r;)? = 3.7x10~°. The initial concentration (att =10)is
taken Co = 0.005, whereas the concentrations at the ends for ¢t > 0 are: €, = 0.005 and C;
= 0.05. In all cases, inclusion of the hygroscopic effects leads to a very slight reduction of
the critical pressure relative to the benchmark pure mechanical loading (external pressurc)
case. Hence, the local (contained near the boundaries) hygroscopic boundary layer docs
not influence the global buckling behavior. This hygroscopic field may have other effects,
however, such as the initiation of local failure.

The hygroscopic effect on the bifurcation load, that was found in Snead and Palazotto’s
(1983) and Lee and Yen’s (1988) studies, is due to their assumption of a degradation of
the matenal stiffness due to moisture and temperature. On the contrary, in this paper we
have assumed moisture-independent properties. Hence, this study emphasizes the fact that
reductions in the critical load due to moisture are attributed to the reduction in elastic
moduli and not to the moisture-induced stress fields.

Finally, Figure 3 shows the effect of material constants by presenting a comparison of
the critical load for the orthotropic case with the previously given moduli and Poisson’s
ratios, and the corresponding one by assuming isotropic material with modulus £ = Ej,
i.e. the modulus along the periphery, and Poisson’s ratio v = 0.3. It is seen that the
orthotropy results in significantly lower critical load with increased thickness.

Table 1
Critical Pressure, p.. R} /(E;h®)
Orthotropic, moduli in GN/m?: E; = 57, E; = E; = 14,G;3; = 5.0, Gy = Gg3 = 5.7
Poisson’s ratios: v;2 = 0.068, vo3 = 0.277, v3, = 0.400

ra/r Elasticity Shell Percentage
- Increase

1.20 0.2784 0.3308 18.8%

1.25 0.2780 0.3495 25.7%

1.30 0.2762 0.3681 33.3%

1.35 0.2733 0.3864 41.4%

1.40 0.2696 0.4046 50.1%
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From the results presented previously, it ean be concluded that predictions of stability
loxs in composite thick structures can be quite non-conservative if classical approaches
arc uscdl. The present formulation and solution provide a means of accurately axscusing
the limitations of shell theories in predicting stability loss when the applications involve
orthotropy and moderately thick construction. Furthermore, the present work includes a
formulation for including the effect of the transient boundary-layer hygroscopic stress field
on the critical load. Further work is needed to assess the accuracy of improved, higher
order shell theories predictions on the critical load in comparison to the elasticity ones.
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