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ABSTRACT 
The stability of equilibrium of an orthotropic thick cylindrical shell subjected to exter­

nal pressure in a hygroscopic environment is investigated. In this approach, the structure is 
considered a three-dimensional elastic body rather than a shell. FiI"St, a fundamental anal­
ysis that formulates the basic buckling equations with the appropriate boundary conditions 
in the elasticity context is perfonned. Subsequently, the critical loads for pure mechanical 
loading (external pressure) are derived. Following this benchmark analysis, the particular 
emphasis is placed on examining the effect of the boundary-layer transient hygroscopic 
stress field on the critical load. Constant moisture concentrations on the inner and outer 
surfaces are imposed in addition to the external pressure. Since the moisture diffusion 
process is relatively slow, the hygroscopic stresses are confined for practical time values 
to a boWldary-layer region near the surfaces. The analysis first uses the series expansion 
for the Bessel functions for small arguments and then the Hankel asymptotic expansions 
since an increasing number of terms is found to be needed. Compared to the classical 
shell theory approach, the results of this research show that the shell theory predictions 
on the critical load can be highly non-conservative whf'n moderately thick construction 
is involved. However, thc hygroscopic boundary-layer has a negligible influence on the 
cri tical load. 

INTRODUCTION 
A class of important structural applications of fiber-reinforced composite materials 

involves the configuration of laminated shells. Although thin plate construction has been 
the thrust of the initial applications, much attention is now being paid to configurations 
classified as modcrately thick shell structures. Such desiglls call be uscd in componcnts in 
the aircraft and automobile industries, as wcll as in the marine industry. Moreover, com­
posite laminates have been considered in space vchicles in tht' fonn of circular cylindrical 
shells as a primary load clUTying structure. 
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l/l thNl<' li,ll;hl-wri,ll;ht Ilhl'll ~tnJ(~tll!'M', 10M of ~tllhility i" of primlU)' CO/lcrm_ Thi~ 

suhj,-ct IlIu, bt.~/l rMM'.arched lo-dlltf' thro~h t~ application of th~ cylindricl\l IIhrll thf'Ory 
(1'.,;. Simitll('ft, Shllw lind Shcinmlln, 1~). H~ver, pr<"vioul work (c.,II;. P",II;1U10 '"Id 
"-l,illl"y, I!J70) hll.. ~hown that COlllliclf'rllblc cart' mUllt b<- f'xt'r<"illN1 in apP})'ing t hill "h.,11 
lllf"ory formulntio/l" to preclict th,. rMiponllC of compositf> cylin<kfll_ Iksid~ the lIJ1isotropy, 
coml'0sitr II I11'11s h",.... one otlx-r importlUlt cli!ltinll;uishing frlltllr<", nl\lnrly rxtrnsioulll-to­
shf'1If lJIodulus ratio much larger thlU1 that of their metal countrrplUts. 

III ordrr to more IICcuratrly IIccount for the IIbove mentiOCled effects, various lJIod­
ifications in the c11l.....icll.! theory of larninllted Mf>II" hllvc gcncrll.!ly bccn perform,',l (e.g. 
"'hitnry lind Sun, 19i4; Libr=cu, 1!J75; Reddy and Liu, 1985). These higher order s!wll 
thf'Orirs can be applied to bllcklin,ll; prohlems with the potrntial of improve·d pr",lictiolls 
for the critical load. 

Towards the ohjective of producing an solutioll ba.<;ed on thr('('-climrn.siolllll e],\..sticity 
to the prohlem of l)llckling of composite shell structures, against which rC'Sult S froll\ "arious 
shrll throriNi could he compare-d, this work presents an rla.sticity solution to the I'rohlt-IJI 
of hucklinF; of composite cylindrical orthotropic shells suhjffted to external pressllre. :\11­
lJIerical resutts for all example case of a fi beT reinforced hollow cylillder Ull( Icr "X terunl 
prt"Ssure are derived i\/ld compared with shell tlx-ory predirtiolls. 

Another important requirement for the confident application of these structuml dr­
signs in severe hygroscopic environments is tbe adequate understanding of the influence 
of the' environment, and in particular the effect of the stresses induced by moisture. It is 
well-known that a polymeric resin absorbs moisture' from its environment. In this context, 
\rang and Choi (1982) suggested that IU1 unanticipated failure of a composite structure, 
frequently initiated at the edges, can be a result of hygr05Copic stresses ncar the edges. 

Although the majority of hygroelastic analyses have been performed in plate struc­
tures, some studies ha'-e also been reported in thin shell geometries. In particu1.Lr, Doxcc 
and Springer (1989) analyzed hygrothermal stresses and strains in an axisymmetric COIll ­

posite shell according to their higher order shell theory. It should be emphasized that just 
as the classical lamination plate theory cannot predict the boundary-layer hygroscopic 
stress field in pIate geometries. the classical shell theory cannot capture these highly 10cnl­
ized stresses in shell geometries. 

Concerning the influence of hygroscopic fields on the point of stability loss, Snend 
and PaJazotto (1983) used the finite element method to investigate the moisture iUlel tem­
perature effects on the instability of cylindrical. thin composite panels subjected to axin! 
loads. They concluded that the bifurcation load will be degraded as moisture concentations 
and temperatures increase and also these are influenced by the panel's ply orientations. 
Lee and Yen (1988) did work with the similar problem to Snead and Palazotto's (laS3). 
They included the effects of tbe transverse shear deformations to the classical shell theory. 
On the basis of their finite element analysis, their results are consistent to Snead's and 
Palazotto's (1983). 

In this work, the influence of transient hygroscopic stres5eS on the critical point of a 
hollow orthotropic circular cylinder loaded by t"Xternal pr<."SSure is examined. It is assumed 
that both the inner and outer surfaces are at constant (but different) concentrations of 
moisture. The material properties are assumed independent of the concentratioll of mois­
ture. The elasticity solution produced in this paper provides accurate results for certain 
simple configuration.s, but, more importantly, fonna a b/lllil for compMing various shcll 
t hf'Ories that could be potentially used for mort' complex gf'Ometries. 

FORMULATION 
III tcrms of th.. sccond Piola- Kirchhoff Lt,t us consider tilt' Nluations oC equilibrium
 

~I rt'SS t,'nsor 1: ill the form
 
(Ill) 
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wh~ F is th~ dd'ormlltion ,;radit'nt dMln<'d by 

(1 b) 

where V is the diKplllCcmnJt \,('dor IUId I is thc identity ~nsor. 
Noticc that the fttnlin trnsor ift dl"finrd by 

1 T )E = 2 (F .F - I (lc) 

More lIJ>l'Cifically, ill t~rms d th~ lin~1Il' strail1ll: 

IOv u 
(2a)ell =-- + - ,

roe r 

1 f)1.I. Ov I' 

Cr , =; oe + Or - ; , (2b) 

and the linear rotations: 

lOw ou 01.1. Ow Ov v 101.1. 
2w r =-- -- 2w, = - -- 2w - - +- --­ (2c) 

roe oz Ol or' • - Or r roe 

the deformation gradient F is 

!e r , w.-

(3)l+c" 
~c,. + W r 

At the critical load there are two possible infinitely close positions of equilibrium. 
Denote by 1.1.0, Vo, Wo the r. e and z components of the displacement corresponding to the 
primary position. A pertuI"bed position is denoted by 

1.1. = 1.1.0 + al.l.l; v = Vo + aVl ; w = Wo + aWl , (4) 

.....here a is an infinitesimally small quantity, HeI"e, al.l.l(r,e,z), av)(r,e,l), Ol.l.'l(r,e,l) 

are the displacements to which the points of the body must be subjected to shift them 
from the initial position of equilibrium to the new equilibrium position. The functions 
1.1.1 (r, e, z), Vl( r, e,l), WI (r. e,l) are assumed finite and a is an infinitesimally small quantity 
independent of r, e, l. 

Following Kardomateas (1993). we obtain the following buckling equations: 

(50) 

(Sc) 
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III th~ prrViollll rqlll\tiollll. D?, 1\1111 l.J~ Me th~ VI\l"l'2< of 17'1 I\1ld l.Jl at th.. illitilJ 
Nillilillrilllll pOliiLion. i.r. for u = Uo •• ' = "0 1\111\11' = Wo. '''lid ":, NH!...,; are the VR.IUCIi 8L 
Lh.. prrtllrl,..<i p'l'iitioll, i.r. for u = u I. " = "1 "JII! W = WI' 

TI... ),011 ud lU')' cUllIliLiollN ,...."OCilltNI wiLh (1,,) CI\1I \)(' ,-xpr"'''''''''! "": 

(G) 

wit....... i"iH t11l~ trlU"tion VN'tor on tit.. IIlIn"C(' which IlAJI outwl\rd unit norlllH.1 N = (i. ,il. il) 
),.10re My drfonn"tion. Th.. trllCtion vN'lor i" d"pn1ds Oil tltr displl\('(~m..nt fi ..ld li 
(11,",11'). AF;llin. followin,; KMdolllllt ..ll.~ (l!Y.>3). woe obtllin for the boundinp; SlInl\C('s: 

( '0'0')/" ('0'0')-+- Tr,w, + T"W, + T" - o,,w, + T"W, III 

' 0' 0') . (' " , .) (7ll) 

D rr 

+ (T"-T"W,+O,,w, II=P ""',m-l.J,n • 

' 0' 0')' ('/' ,.) (7b)+ (T" + T"W, - 0 "W r 71 = -p W, - L.:,n , 

' 0' 0')" ('/' '-) (7e) 

Since for the Jat ..raJ sunaces m = ii = 0 and i = 1. 

+ (0" + T"W, - T"W, n = p w, -w,m 

(Su) 

(8") 

(8e) 

Pre-buckling State. The problem at hands is that of a hollow cylinder rigidly fixed 
at its eods and defonned by unifonnly distributed external pressure p (Fig. 1). The 
cylinder has an ioner radius. 1"\ and an outer radius, 1"1' The radial. circumferential alld 
axial coordinates are denoted by 1", e and z. rcspecti\·cly. It is assumed that the initial 
concentration (at I = 0) is Co. For I > O. the boundaries I" = '\ and I" = 1"1 are kept ilt 
constant concentrations C I and C2 , respectively, The reference concentration is taken as 
zero. The moisture problem is soh·ed by the Fickian diffusion equation: 

OC(r.l) = D~~ (rOC) (90)
&t r Or Or 

where C(r.l) is the moisture concentration and D is the moisture diffusivity of the COIII­

posite in the r direction. The initial and boundary conditions are 

C(r,1 = 0) = Co (9b) 

C(rl. t) = C1 and C(r2. t) = C1 I > 0 , (ge) 

where Co. C\ and C1 Me constaIlt~. Crank (1975) lI:ivcs the general solution for till' 
distribution of th~ concl'ntration of moisture C(r.l) to UI. (9) ill tenns of the De~~l'1 

(unctionM of the fil'1lt and lK'cond kind J" and Y", M followM: 
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Fig. 1. Hollow cylinder under external preasure.,I I
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C(r,t) = 6J ln(r/rJ) + ~ In(r2/r) + L
00 

[cnJo(rO'n) + dnYo(rO'n)] e-DO~1 (lOa) 
n:;;:.1 

where 

61 = C2 b-z = C1 
( lOb)

In(r2/rJ) In(r2/r ,) 

",Jo(rIO'n)Yo(r20'n) (Co _C2Jo(rlo n ) - CIJo(r20'n») 
( lOe)

JO(rIO'n) + Jo(r20'n) Jo(rIO'n) - Jo(r20'n) , 

Jo(r2 0 n) 
::-:-~-"':"cn, ( 10d)
Yo(r20'n) 

and O'n are the positive roots of: 

(10e) 

The hygroscopic stress-strain relations for the orthotropic body are 

Grr
 

Gil
 

G" 

T"
 
Trz
 
T.,
 

CII CI2 Cl3 0 0 0 
CI2 C22 C23 0 0 0 
CI3 C23 C33 0 0 0 
0 0 0 CH 0 0 
0 0 0 0 CH 0 
0 0 0 0 0 C66 

(" -13.uC 
(" - P,t':t.C 
(" -13.t':t.C 

(II)
"{8, 

"{rz 

...,., 
where C,j are the elastic constants and 13, the swelling coefficients (1, 2 and 3 rl'prt'scnt 
r, (} and ;;, respectively). The geometry (Fig. 1) is axis)·mmetric. Since the !lloist 1If<' 

concentration is assumed to depl'nd only OIl the r direction, thl' stresses are indl~p('Ilt!<'1l1 

of (} and;; and the hoop displacement is zero. III addition to the constitutive <,qllatioll (II), 
the equilibrium ('(]uationR have to be satisfied; since T.,=rrz =r" =0. only one e'lllilibrilllll 
('(juation remains: 
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80 rr 0 .. - 0" 
(12)---0;:- + r = 0 . 

III thiN ,",wI. 111I'l!i"Pla«"m~nt firld I!rrivNi by L<'khnitNkii (l!>Sl) for tilll,··in,lel','n<!"111 
pmbll'lllH I\JlIllIIol!ifiNI by KlU'clom/ltl'M (1 !>80) for I illll·.l!rl'(·nl!rnt Ilwnllal ~trl'l<.~ probJ"lns 
(which Ilrr IUll\lOgOUN 10 thfo timr·clrl'rnl!rnt moiNlun··iJulucNI "I n",,-1 pmblc-lIIs) iN uscl!: 

tI, = VIr,') + z(I.I',("(~9 - II', liinll) + tlo cosB + 1'0 sin9. 

tI, = - =( w, flin 9 + w. cos 9) + 1.1'. r - 1.10 sin9 + 1'0 cos B , ( 13) 

". =zl(')-r(w,cCY.I8-w,~inB)+tI,o. 

wlwrc the function V(r, t) ~prcscntB the rMlial di~plllceml'nt accomplUlire! by deformntion. 
The constnnls tlo, 1'0 nnd Wo denote the rigid body tnUlsllllion RJong thl' x. yawl z 
directions in Ihe Cllflcsian coordinate system, respectively. nne! w,. tI·, I\JIe!lI', drnolc th,' 
rigid body rotation in th~ x, y nnd z directions (these mny also be functions of lillie, but 
sillce they do not appear in the strain expressions, such a dependence would not affect t IIC' 
expressions Ihal follow in this section). 

The parameler f(t) is obtained from boundary conditions. The strain, arc exprr,,,,·" 
in lerms of the displacements as follows: 

av( r, t) U(r,t) 
(rr (88 = ---, (" = I(t) •= a;:--' r 

18, = 1 .. = 1.' = 0 . ( 14) 

Since the structure is assumed, for simplicity, fixed at the ends, fIt) = O. i\otice th"t 
this is a difference with the boundary condition of axial force developed due 10 the pressure 
at the ends, which was assumed in the boundary-layer hygroscopic stress field study by 
Kardomateas and Chung (1993). 

Substituting Eqs. (14) and (11) into the equilibrium Eq. (12) gives the following 
differential equation for r.:( r. t): 

02 U(r, t) , 1 av(r, t) ] en r: ) _ aC( r, t) C( r, t) 
ell a 2 T-~ -2v (r,t -q] ::l +q2--, (15)[ r r VT r ur r 

where 

(lGa) 

To solve Eq. (15), set 

l'(r, t) = VoIr) + L
oc 

R"(r)e-DO~1 ( 17) 

,.=1 

Substituting Eqs. (10), (16) and (17) into Eq. (15) yields the following equations to he 
satisfied for Vo, and Rn for n = 1,2", '.:XO: 

( 1Gb) 

(18n) 

---_.__. --_. 



+d" [q~ YO(~O,,) _ 910.YdrO,,)] n = 1, ... 00. (18b) 

For elU:h of the prt'VioulI rqu"tions, the ~ution ill the .urn cl a homogt'neous IIOlutioll 
Ilud " p&rticull\f one. The IOlution of the bo~l'JOUi rquatioa i. in the fonn G.(t)r A 

, 

+Gl (t)r A• with 

.\I,~ = ±JC,,/CII . (18c) 

Now set Gt(t) in the form: G;(t) = G jo + E Gj"e-D.~I, i = 1,2. 
Since the constants G,j are yet unknown, we shAll indicate the places where they 

cntcr in thc cxpreaaions that follow (tbe.e constants are found later from the boundary 
conditions). For CII I- c~~ the solution of (IBa) for Uo(r) ill 

(19a) 

where 

bU;(r) = ql J r In(r/rd + ql~ rln(rl/ r ) + [ql(CII - cn) - 2Q1C1I1(b l _ ~)r . 
Cll-Cn CII-~~ (Cll-cn)1 

(lOb) 
For CII = Cn the corresponding solu tion of (188) IS given In the expanded paper by 
Kardomateas and Chung (1993) with 10 = O. 

To solve (18b) we use the series expansions of the Bessel functions to obtain Ii series 
expansion of the right-hlUJd side, as given in Appendix I of Kardomateas and Chung (1093). 
In the following, .., stands for the Euler's constant (~ 0.577215... ). 

For Cll 'f cn, the solution is: 

(20a) 

d 
R o () B 2Q2 n in( / ~ 1k+3l ( /) B 1k+3 (?Ob)n r = Onr + )r rOn 2) + L B.nk r n ran 2 + 2nk r ,­

h( CII - Cll *,,=0 

where BOn, B I nk and B2 nk are given cxplicitly in Kardomateas and Chung (1993). 

The series expansion for the Bessel functions cannot be used for largl' arguments; 
hence, the requirement of including an increasing number cl terms and therefore large 
arguments, necessitates finding a particular solution for the "'large arguments" domain. 
This is achieved by using the Hankel asymptotic expansions of the Bessel functions of the 
finit and second kind. Employing the substitution 

(21a) 

gives the following equation for R~·(p) 

x {(cn + dn )(Ql sin p - al,kpC05 p + a2,k/ sin p)+ 

• 2 }+ (cn-dn)(Q2cosp+-al,kpsinp+a2,kp cO'Sp) (21b) 

Thc solution of the above equl\tion for the function R~·(p) is found to bc 

00 

RO.(p) ="'pn p-1k- l n cosp + "n p-1k-1/2 sin p+" L ',1 ',1
*.0 
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+P" p-H-3/1 coe P + A" p-H-3/1 ain p .	 (22)
.,1 •.1 

Th(' cuefficients P'.I' .••. 1. Pl,1' ....1 /U'(' dett"rmined I>y ron!liorring the tenn!l in the 111111 

th"t contribute to thr trnns p-H-I/1 cosp, p-H-J/1rrinp. p-H-3/1 coep, p-1.-3/1!1inp 

in the right hand !Iiot" of (21 b). Rccllnlive fOrTnulM for P~.I' "~.J' ano for P4,1' A~.1 lin' 

thlL~ ohtl\ined. lUlO thNC:" are given in KaroomAtt'1\Il 1\1ld Chung (1993) (Illong with the 
.Idinitioll!l of Ill ••• Il~ •• IUld 'h(k) in the previous formuIM). 

Notict' thl\t sillee both these solutions for the different domains (i.e. series explUlsioll 
Ilr HI\1Ikel asymptotic expansion) /U'e particul/U' 1lOlutions II homogcneoud solution term is 
aooed Rt tht' trlUlsition point as is discussed in the latter reference. 

Thus. the t'xprcssion for U( r. t) satisfying the equlibrium equations is obtained with 
the unknown cocaicients CIO. IUld G,o; GIn and G,," for n = 1,2 .... These coefficients 
Me determined from the following boundary conditions: 

Trl(r •• t) = T..(r"t) = 0, i = 1.2 . (23) 

where P is the external pressure. Only those for the stress (1 .. are not identically satisficcl. 
The stress (1 .. on the boundaries is written in terms of the displacement field: 

U(r •• t)
arr(rj,t) = cIIU,,(rj,t) +CI'--- - 9IC(rj.t), i = 1,2, (24) 

r 

Substituting Eqs. (10), (16). (17) into (24) for Uo(r) gives the following two linear equations 
for G IO and G,o: 

(CIIAI + cl2)rt.- I 
G lo + (CIIA, + CI,) rj:l.,-IG20 = 

U"(r)0 (25a) 
r, 

= -CIIU;'(r;) - C12--' + ql [b1 In(r;jrJl + b, In(rdri)] + Pi i = 1,2, 

where p, = 0, at i = 1; Pi = -P at i = 2. 
In a similar fashion, by substituting the expressions for R"(r), there correspond two 

linear equations for GI", G2" for n == 1, ... 00, as follows, 

(25b) 

Therefore the constaLlS G ij and hence the displacement U can be found by solving 
(25). After obtaining the displacement field, the stresses can be found by substituting in 

(14)	 and (11). 

Perturbed State. In tht' petrurbed position Wt' seek plane equilibrium modes as follows: 

(26) 

As discussed in Kardomateas (1993), we can use for the first order strains the simple 

linear strain expressions. Therefort', 

vl(r,B) = B"(r)sinnB; 

(2711)t~r = A~(r)cosn(}, 

/ A"(r) + nBII(r) (}t" = cos II , (27b) 

/ [8/ () 
r 

(}Bn(r) + n.-ln(r)].r	 (27c)1rl= n - r 1I1ll" , 
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(27d) 

nul! thr first order rotations are 

"'. .' = [IJI () B,,(r) + nA,,(r)]. 9 
"'-'I, " r + &10 n • (27c) 

r 

w~ =w~ =0 . (27f) 

Denote A~i)(r), B~;)(r) the i-th derivative cl A,,(r), B.(r) respectively, with the no­

tation A~O)(r) = A,,(r) and B~D)(r) = B ..(r). Substitutins into the buckling equl\tions 
(5) and using the constitutive relations, we obtain the followins two linear homogeneous 
(lrdinary differential equations of the second order for A"(r), B"(r): 

1 

LA~;)(r)r;-1 (diO + d;I17~,(r, t;p)] + 
;=0 

I 

+"B(i) ;-1 [ 0 ( t·)] aL "r qio+qil 17" r, ,p = , (28a) 
;=0 

1 

LB~i)r;-1 [biO + b;I17~(r,t;p)] + 
.=0 

I 

+ LA~;)ri-2 [/;o+fil17~r(r,t;p)] = 0, (28b) 
i=O 

where 
o oU(r,t;p) U(r,t;p) C )

17rr (r,t;p) = clI 0 +CI2 -ql (r,t, (29a) 
r r 

o oU(r,t;p) U(r,t;p) )C(
17,,(r,t;p)=CI2 Or +C22 r -(ql-q2 r,t), (29b) 

In terms of c = rl/r1, the expression of U(r,t;p) is in the form 

00 

+U;(r) + Le-DQ~1 [GI"r~1 + G2"r-~1 + R:(r)] , (29c) 
n=1 

Notice that U;(r), R:(r), G I " and G1" are not dependent on p, and in fact the relationship 
(29c) gives whatever dependence on p exists (which is linear). This is important because 
in the numerical implementation that will be described shortly, derivatives of 17~ and 17~8 

with respect to p are needed, and these are found directly from (29) without a need for a 
numerical differentiation. 

The boundary conditions (8) are written as follows: 

j = 1,2 (30a) 

j = 1,2 (30b) 
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.' 

------- _.._- -­

wherr Pl :::: P for j :::: 2 i.f'. r = r2 (oubicle boundary). and Pj :::: 0 for j :::: 1 i.e. r :::: rl 
(in~ide boundl\lY). 

The COlllltl\Ilts d. j , q,j. bilt hj in the abo\'e equatiollll arc given in Appendix I of 
KllTdoml\telUl (1993) and depend on the material stiffness codficients c.j and the constant 
n. 

For a fixed time, cqllatiollll (28) and (30) constitute an eigenvalue problem for ordi· 
nary scrond order linear differential equl\tions in the r variable, with the applied extcTIllI1 
prCfisure P the pllTllTOeter. This is euentially a standard two point boundary value pr.:>blem. 

The relaxation method was used (Preas et al. 1989) which is essentially based on replacing 
the system of ordinllTy differential equations by a set of finite difference equations on a grid 
of points that spans the entire thickness of the shell. For this pUtyoge, an equally splU"cd 
mesh of 121 points was employed and the procedure turned out to be highly efficicnt with 
rllpid convergence. As an initial guess for the iteration process, the shell theory 501\lt ion 
was used. The minimum eigenvalue is obtained for n = 2. An investigation of the COIl\·cr· 
gcnce showed that essentially the same results were produccd with twice as many mesh 
points. 

RESULTS AND DISCUSSION 
As an illustrative example, the critical pressure was dctermined for a compositc cir­

cular cylinder of inner radius rl = 1m. The moduli in GN/m2 and Poisson's ratios used 
(typical for a glass/epoxy material) are listed below. where 1 is the radial (r), 2 is thc 
circumfcrential (9). and 3 the axial (z) direction: £1 = 14.0, £2 = 57.0, £3 = 14.0, G I2 = 
5.7, Gn = 5.7, G31 = 5.0. 1/12 = 0.068, I/n = 0.277, 1/3J = 0.400. 

Figure 2 shows the critic~ pressure as a function of the ratio of outside vs. inside radius 
r2/rl (pure mechanical loading). The elasticity solution is compared with thc prcdictions 
of classical shell theory (e.g. Ambartsumyan, 1961). 

The direct expression for the critical pressure from classical shell theory is: 

h3 

P c = (n 2 
- I)-- (31)cr... (1 

~ 
) 1?R3 .- 1/231/)2 ­

where R = (rJ + r2)/2 is the mid-surface radius, and h = r2 - rJ is the shell thickness. 
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The previoua value can he found by UlIing th~ Donn('U nonlinelU" shell theory <'qlliltion~ 

(Brush and AImroth, 197~) and seekirl& the buddrd Hhl\pt"3 in the fonn (26) whe~ A"(r) == 
A", i.e. it is now a COll3tant ill3tead ol fUllction of r, lUld D.. (r) = D" +(r - R)fJ with DOl 
Ix-ing Il constant, i.e. it Ildmits a linear varil\tion through th(' thickneslI. SillC'(' fJ == (III ­

111,,)1 R, the Illttcr CAll al!lO he writteo in the fonn D"(r) == D.. +(r - R)( D" +n)1 R. Notice 
thllt the c1U11icalshell theory would he unable to Cl\(ltlln' the cfl'ect of the l\XiH)"nlmctri(" 
moistu~ stress field bcc&use of the auumption of constlU1t radial displllCenl('nt, U(r). 

For a more specific comparieoo ol the r~1ts for 1\ range of radii ratios thl\t wOllld 
probably cOll3titute prl\CticalJy moderately thia to thick shell construction, Tahle 1 shows 
the valUCII of the critica] load, Il8 derived by the prcscnt elasticity formulation IU1d th~ sh('1! 
theory p~dictions for the orthotropic materia]. A simillU" complU"ison is perfornlrd for the 
isotropic case in KlU"domat.cas (1993). 

Concerning the effect cl the hygToscopic boundary-ll\)"er stress field on the critical 
load, the same geometry IU1d materia] is used. The typicaJ vaJlles of hygroscopic explU1sion 
coefficients (e.g., Hahn, 1976) are: fJ. == P, == 6.67xlO-3/wt%, P, = O. For this materinl, 
the moisture diffusivity in the radial direction is D == 2.145xlO- 13 m 2 /scc. This vaJue 
was obtained by substituting a temperature of 50·C to the equation for the temperature· 
dependent moisture diffusivity in Hahn (1976). 

Table 2 shows the critical pressu~ with the effect of the hygroscopic effects included 
at a nonnaJized time t==Dtl(r2 - rJl2 == 3.7x10-5. The initia] concentration (at t == 0) is 
taken Co == 0.005, whereas the concentrations at the ends for t > 0 are: C1 = 0.005 IUld C1 

== 0.05. In all cases, inclusion of the hygroscopic effects leads to a very slight reduction of 
the criticaJ pressure relative to the benchmark pure mechanicaJ loading (extemaJ pressure) 
case. Hence, the locaJ (contained near the boundaries) hygroscopic boundary layer docs 
not influence the globaJ buckling beha\·ior. This hygroscopic field may have other effects, 
however, such as the initiation of loca.J failure. 

The hygroscopic effect on the bifurcation load, that was found in Snead and PaJazotto's 
(1983) and Lee and Yen's (1988) studies, is due to their assumplion of a degradation of 
the material stiffness due to moisture and temperature. On the contrary, in this paper we 
have assumed moisture-independent properties. Hence, this study emphasizes the fact that 
reductions in the criticaJ load due to moisture are attributed to the reduction in elastic 
moduli and not to the moisture-induced stress fields. 

Finally, Figure 3 shows the effect of materiaJ constants by presenting a comparison of 
the criticaJ load for the orthotropic case with the previously given moduli and Poisson's 
ratios, and the corresponding one by assuming isotropic material with modulus E = E1 , 

i.e. the modulus aJong the periphery, and Poisson's ratio v = 0.3. It is seen that the 
orthotropy results in significantly lower criticaJ load with increased thickness. 

Table 1
 
Critical Pressure, pc.ml(~h3)
 

Orthotropic, moduli in GN/m2
: E2 == 57, E1 = E3 = 14, G31 = 5.0, G I2 = Gn = 5.7
 

Poisson's ratios: Vl2 == 0.068, Vn = 0.277, V31 == 0.400
 

rllr l Elasticity Shell Percentage 
Increase 

1.20 0.2784 0.3308 18.8% 
1.25 0.2780 0.3495 25.7% 
1.30 0.2762 0.3681 33.3% 
1.35 0.2733 0.3864 41.4% 
1.40 0.2696 0.4046 50.1% 
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From th,. rrtlullR p~tl'd prt'viOUIly. it can ~ concluded thl\t predictionll of lItl\bility 
10"" in rom(lOl'ite thie-k ~truCturCll CAll ~ quite non·conservatiw- if clMllirl\l approl\rh,.,. 
nrr USN!. The prClW'lIt forrnull\tion and Qution provide a meanll of accurl\tely aJ<.'<Cuin/l; 
the limitation!! of .h,.U theori(':!l in prt'dictin~ lItability loss when the applicationll invol\'e' 
orthotropy Nld mOOr-mtdy thiclc construction. FUrthcrmort'. t~ p~t work incluclNl n 
fOT1lllllntion for includin/l; the r:ffect of the transient boundl\T)'-lAy<'l" hygroscopic stress fidd 
on tIll' criticN 10M. FUrther work ill needed to M8e'I8 the accuracy of improved, higlwr 
onlrr shell theories predictions on the critical load in compl\riaon to t~ elasticity olles. 
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