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SUMMARY 

The statics and dynamics of the supporting cables of compliant structures are of primary im­
portance in studying the behavior of the overall system. In this study efficient analytic 
solutions are presented for the guyed tower that reduce significantly the computational effort 
required. and allow a wide parametric search, which is essential in the early design phases. 

First, the cahle statics are presented and the importance of the concept of the effective 
tension is discussed. Analytic solutions including the elasticity effects are derived. 

Next, the cable dynamics are studied and analytic solutions are developed using perturbation 
techniques. In particular, the effects of elasticity and catenary shape are presented since they 
can alter the nature of the dynamic response. The form of the solutions allows a simple treatment 
of the dynamics of multi-leg systems. 

The dynamics of the guyed tower are studied and the effect of the clump weight is assessed 
i' 'e form of a softening spring. The inertia and drag forces of the clump weight are identified 
a, urces of dynamic amplification and phase lag. The use of perturbation techniques allows an 
et!~cient study of the dynamic behavior of the system. 

The effect of nonlinearities is discussed and analytic techniques to account for such ef­
fects are presented. 

The theory presented is illustrated by studying a specific guyed tower in 1,500 ft. of water. 



INTRODUCTION 

The dynamics of structures supported by mooring lines are complicated because of the blend-
of the dynamics of the structure with those of the cables. The need for efficient tools is 

~grticularly pressing at the early design phases, when no detailed system configuration exists so 
as to exercise it by using numerical techniques, such as finite elements or finite differences. 
At the same time, the most important parameters are to be selected at this phase, with very sig­
nificant consequences for the subsequent design phases. ' 

The co~lexity of the dynamics of a single moorin~ line is such that simplistic models lead 
to unreliable nredictions. The fact that the governing e~uations are nonlinear partial differen­
tial equations with variable coefficients forces many investigators to employ numerical techniques 
at a very early stage, with significant consequences for the cost and flexibility of the design 
procedure. 

This study is presented so as to indicate some siMPlifying facts concerning the behavior of 
mooring lines. In particular, the major factors contributing to the response of a cable are indi­
cated and a simnle but comprehensive dynamic analysis is outlined. The nonlinearities are also 
studied, but it is the belief of theauthors that their effect can be assessed very efficiently 
by using analytic techniques with a better qualitative understanding than by employing numerical 
techniques. 

It should be emphasized that the present paper focuzcs on the preliminary design phase and the 
results that are derived are simple but efficient solutions allowing a wide parametric search. 
These results are by no means general solutions to the cable dynamic problem, since such analytic 
expressions are impossible to obtain, but they are applicable within the frame of selecting the 
various parameters involved so as to minimize excessive dynamic phenomena. 

The results have been derived for a guyed tower to demonstrate how to obtain simple solu­
tions in an application-oriented manner. 

GUYED TOWER 

The guyed tower is one of the concepts that is being studied as an economical alternative 
to the jacket platform for water depths between 1,000 and 2,000 ft. 

The conce~t has been described in detail in several Dublications (lJ (2] (3] (4J. The sys­
~loys a slender truss-type tower supporting the dec:, on which all working equipment is 

i.. _alled. The lower end of the tower is connected to a snecial foundation which imposes small 
rotational restraint on the structure. Proposed foundations include a spud can and ungrouted piles 
extending along the full length of the tower. The lateral support is provided by a number of 
cables whose upper end is secured on the deck by cable grips, while they pass around fairleads 
located below the water level and then they extend radially to clump weights located on the sea­
floor. The clump weights are connected through horizontal lines to the anchors. Buoyancy tanks 
are provided so as to reduce the foundation l~ad and to ~rovide additional lateral restor~ng moment 
(figure 1). 

The ten~ioning system could be used to change the pretension level so as to handle extreme 
weather conditions. 

The primary objective is to obtain a compliant system whose first natural frequency, treating 
the tower as a rigid body, is below the wave frequency range (typically between 0.2 and 1.5 rad/ 
sec). This objective places the guyed tower at the opposite end with respect to the wave frequency 
range than the jacket platform, whose first natural period for shallow water is typically 2-4 sec. 

The problems that arise include the dynamic behavior of all subsystems involved, especially
 
of the mooring lines: the structural integrity of the tower and the cables both in extreme loads
 
and fatigue: and the damage stability of the system.
 

MOORING LINES 

The mooring line is capable of supporting external forces by re-adjusting its configuration, 
given that it can support only positive tension which is tangent at each point to the line shape. 
This fact noses limitations to the holding capacity of a mooring line in the case of dynamic loads, 
because if the rate of change of the external force is fast, the cable configuration does not 
change as fast, resulting in poor holding capabilities. In addition, the configuration forms waves 
which may cause resonance phenomena and therefore large parasitic tensions. 

The saq to length ratio is a very important parameter for cable dynamics. When the sag is
 
very small, we obtain essentially a taut wire which can easily support dynatlic forces along its
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axis, while it provides very little support against any fast varying tr~nsverse force~ The long­
itudinal load can change fast except that its frequency range must remaln below the flrst longitu­
-'.nal (i.e. stretching) natural frequency. The longitudinal natural frequenci~s are given as: 

(c.lmi • t ~ (1) 

where L is the cable length, E is Young's modulus and p the cable density, while the trans­

verse natural frequencies are (assuming a constant tension T.)
 

(2) 

with d the cable diameter. For a steel cable the ratio T./fd
2 

must remain below the elastic 
limit so by using some typical steel properties we obtain: 

~~~ E .. ~ 40 (3). mlc.l n (T 1!d 2 ) n 
n t • 4­

We conclude that the first longitudinal frequencies are much larger than the first trans­
verse frequencies. This is the reason why the cable can eas~ly sustain dynamic loads in the 
longitudinal direction, while for normal wave and vortex shedding loads its longitudinal response 
is quasi-static (i.e. the longitudinal stretching can be re~resented by a distributed spring). 

One particular aspect of taut cables is the possibility for parametric resonance [51: The 
axial quasi-static stretching of the cable causes an oscillatory change in the tension which con­
stitutes the restoring mechanism in the transverse dynamics. As a result, the transverse dynamics 
are characterized by an equation whose time dynamics are in the form of a Mathie'J equation. Under 
certain combinations of wave frequency versus cable natural frequency, large transverse oscilla­
tions may occur. 

When the sag is large the stretching becomes unimportant for the transverse dynamics, which 
are essentially the dynamics of a chain [61, [71. As outlined in [8], we can define a tangential 
and a normal unit vector at any point along the static configuration and define a dynamic motion 
along the normal (transverse dynamics) and a motion along the tangential (axial dynamics). The 
~lution consists of the sum of a solution that varies slowly along the cable length and is essen­
ally a perturbation of the static configuration (catenary dynamics): and a solution which in .~'e 

_ransverse direc~ion resembles the motion of a taut string. 

For moderate values of the sag (of the order of 1/8 of the length) both stretching and 
catenary dynamic effects are important. This was first recognized in [9] and a solution was ob­
tained which uni~ied the theories for small sag (taut wire) ~nd large sag (chain dynamics). 

The nonlinearities involved in the dynamics of a cable are composed of geometric nonlineari ­
ties (large amplitude motion): nonlinear stress-strain relations, especially for large dynamic 
tension: and nonlinear fluid force~ which can be represented in the transverse direction as 

(4) 

where F is the transverse force per unit length, pw the density of the fluid, d the cable 
diameter and Un the relative velocity between the fluid particles and the cable in the normal 
direction. 

As we have already pointed out we are interested here in solutions useful for design. This 
means that we must identify the mechanisms leading to large dynamic motions but we need not study 
those extreme motions, which are known to cause failure. hs a result we try to find the dynamic 
response with as simple a model as possible: From the three classes of nonlinearity indicated 
above only the nonlinear drag has a definite effect on the r1ynamics we are interested in. 

When a system is lightly damped the (small) nonlinearities can be studied by using a double 
perturbation exnansion in amplitude and time, as for example in the method of multiple scales (101. 
The characteristic of the response is that it consists of a forced part and a homogenous part 
which may not be decaying. 

On the contrary, a system with significant damping responds at the frequency of the forcing 
function while all other terms are very small or fast decaying. This is true for nonlinear damp­
ing as well and although the response is a nonlinear function of the amplitude of excitation there 
is no need to ex~and in multiple time scales. 
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The drag term (equation 4) is a nonlinear function of the velocity Un so its effect depends 
on the amplitude of the forcing function. For a cable driven at its upper end the motion is usu­
ally equal to several times its diameter so the damping is important. This means that the method 

. harmonic balance (11] or the similar method of equivalent linearization (11] can be used to 
ain the cable dynamics. This fact explains the success of applying the method of equivalent 

__ nearization on the problem of the forced response of slender cylinders in water driven at their 
upper end [8}, (12]. 

For very small motions, the effect of the nonlinear damping is of the same order as the 
effect of the structural damping, i.e. the system is rather lightly damped. As a result, cable 
strumming (13] is characterized by phenomena of lightly damped systems such as frequency entrain­
ment, multiple frequency response etc., and although we can not claim that we have a complete 
hydT~dynamic model for vortex shedding, we can at least qualitatively describe cable strumming 
as the limit cycle of a lightly damped nonlinear system (15]. 

This concludes the review of the dynamics of mooring lines which is based primarily on 
physical argument rather than mathematics. In the sequel we develop quantitative techniques, we 
we will refer though to the arguments of this section quite frequently, in order to simplfy the 
equations used. 

STATICS OF MOORING LINES 

The static loads on the cable of a mooring line consist of the external forces, its own 
weight and the drag force from the current. 

A .At each point of the cable configuration we define a tangential and normal unit vector, t· 
and n respectively (Figure 2). Let all quantities referring to the unstretched cable have a 
subscript o. If W is the weight per unit length, d the cable diameter, ~ the angle between the 
vector t and the horizontal, T the tension, U the local current velocity, s the coordinate along 
the cable, Co the normal drag coefficient and Cf the (tangential) frictional coefficient, then 
the governing equations are (8} 

Te ~o= (Wo-Bo)'cos~ + Fn(1+1)·sin2~.U2 (5) 

~~ • (Wo-Bo)'sin~ - Ft(1+!)'cos2~ ·U 2 
(6) 

Te ., T+~2pgz (7) 

d" .. cos~. (l+e)
GSo (8) 

~ .. sin~' (l+e)iiSo (9) 

e .. Te/~2E (10) 

where E is Young's modulus and z the vertical distance from the free surface, while 

8 ., ~~pg0 (11) 

IF ., ~p Cd don (12) 

IF 2"P Cf'lldt o (13) 

The derivation of equation (10) requires that Poisson's ratio is 0.5 which is an acceptable 
assumption at this stage. We must emphasize the fact that the hydrostatic force is normal to the 
cable configuration and not vertical. This leads to the formulation of the problem in terms of 
the effective tension T as defined in equation (7) rather than the actual tension. Essentially, 
we can say taat all staiic solutions derived for cables in the air are valid for cables in water 
(in the absence of current) if the tension T is replaced by Te • 

This leads to surprising results because when the depth becomes large the actual tension 
may become negative, while the extension (which depends on Te according to equation (10) is 
positive. 

This is due to the ·squeezing- action of the external hydrostatic pressure, which causes 
stretching in the longitudinal direction although the tension may be negative. This facet has 
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been overlooked sonetimes in the literature and may lead to significant errors. 

If the mooring line employs a chain then the above are not applicable because each chain
 
link is practically entirely submerged so the buoyancy is vertical and the effective tension is
 
equal to the tension. i.e. for a chain equation (7) is replaced by
 

T • T	 (7a)e 

The actual tension therefore in a chain is larger than the tension in a cable under the
 
same loading conditions.
 

If the current action is iqnored. since usually the current is a near surface phenomenon, 
then the extensible catenary solution can be obtained: 

T - __H_. JH 2 + (V-Wl [L-s) 2	 (14)e cos~ 

x• H {sinh- 1 [V-Wl (L-s)1 sinh-I [v-Wl ~ Hs
VI H--j - ---g T AE	 (15) 

y - ;,{f+[V-W~IL-O]'-A ~{* 0 +;nIL-OJt (16) 

V W
tan.· Ii - RI (L-s)	 (17) 

where V is the vertical and H the horizontal force at the top end, L is the unstretched 
cable length, and: 

(18) 

(19) 

Note that • i. the unstretched coordinate and the subscript 0 has been ommitted for con­
venience. The stretched length becomes: 

(20) 

while it i. reminded that 

ainh-h) • In[x+J1+x2j if x ~o	 (21) 

If the force at the top is large compared to the net weight of the cable, i.e. 

F• /V2 +H 2 »Wl L 

then a shallow sag configuration is obtained, while elasticity effects are important. By 
Ysing a perturbation expansion with W1L/F and F/AE the small ~arameters we can obtain a simple 
solution· to the static equations. By keeping the first two orders we find 

Te • F - WI .in~o(L-s)	 (22) 

W F s 
• • .0 +?cos~o .s+ ~ f U2 (sl)ds l + t b (23) 

o 

Fx • cost ' s + cos4i S ­o o	 ~ 

s'-sin~o [~cos~o b+ ~ ttl U2 (.s2) dS 2 dS l + tbSJ (24) 
o 0 

F 
&in~o·s + .in~o· EA s +Y -

s' 
+ cOS~o'[;lCOS~o b+ ~J 

s 
J 
S 

1 U2 (s2) dS 2 dSl+tbS] 
(25)o 0 

where if D is the water depth 

(25) 
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while 

It should be mentioned that the original equations (5) through (13) are easy to implement 
~ .. a finite difference scheme in the computer and then solve them iteratively fully accounting for 
current and elasticity effects. The analytic solutions are of value so as to check the numerical 
solutions, but primarily to derive efficiently the overall statics of the multi-leg system. 

DYNAMICS OF MOORING LINES 

By using the normal and tangential vectors defined in figure 2 we can derive the equations 
of motion in the normal and tangential directions: (The effect of the current on the added mass is 
omitted). 

~ (JI' em m V~. -Wl·sinljl + ~e- R (l+!)o ar- 0 t (28)
0 

(mo+ao}ir + m u 1t "" -W·cosljl +Te ~+ R (l+~) o dt n (29)
0 

where m is the cable mass per unit unstretched length, a the added mass per unit length,o u is the tangeRtial and v the normal cable velocity and Rt , R are the fluid forces in the t, nn 
directions respectively: 

TT 2 'iN 
R .. (ldo p+a ) r + F (Vn-v) Ivn-v I (30)n o n 

R .. Ft(Vt-u} Ivt-u I (31)t 

where V is the normal and V the tangential velocity of the fluid. Also, the following 
compatability ~quations must be use~. 

_ v 
~o (32a) 

eN + u ~"" ~ (l+e) (32b)
ds ds o\.

O O 

T and e are defined again by equations (7) and (10) respectively.
e 

It is important to compare the dynamics of the overall system with those of the cables, in 
order to decide for the type of governing equations to be usp.d. Let us consider small amplitude 
motions of the cable around an average static configuration defined by a tension To(S) and 1jI0(s). 
Then if we subtract the static equations from equation (28) through (32) we obtain 

(33) 

(34) 

(35) 

(36) 

where IjI , T are the time varying parts of 1jI, T respectiv~ly, while the subscript 0 haslbeen ommitted troM s again for convenience. Note thatethe nonlinear drag force has been included 
in equation (33) because, according to the discussion in an earlier section, this will govern the 
type of technique to be used. No fluid particle motion has been assumed in the equations (33) ­
(36) • 

Since the mooring lines are under large tension the effect of elasticity is as important as 
the effect of the sag. This is the reason for including the elasticity term in equation (36). 
Note that still no longitudinal elastic waves are present as explained in an earlier section. The 
solution of equations (33) through (36) has been derived for a horizontal, flat catenary in [9], 
while the solution for an inelastic cable has been derived in [8]. 
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Using the data provided in Appendix 1 and the solution derived in Appendix 2, the natural 
frequencies are derived as shown in Table 1 (i.e. by taking Fn~O). 

It is important to determine the effect of the damping term. If F~ is small, a multiple 
~le technique must be applied, while for larger Fn the method of harmon~c balance is appropriate 
,lce the cable will be forced to follow the motion of the tower the excursions will be large . 

compared to the cable diameter, and the contribution of the damping is important. As a result the 
method of harmonic balance can be used. 

Assuming a single frequency excitation at the top, of amplitude a and frequency wo , following 
the standard procedure of the harmonic balance (11], we replace the nonlinear term FnV Ivi with the 
equivalent linear ter.m bY, where (8]: 

(37) 

while the response will be predominantly at the exciting frequency Woe 

GUYED TOWER DYNAMIC 

The natural frequency of the rigid body dynamics of the guyed tower is placed below the 
range of wave frequencies, typically around 0.25 rad/sec. This fact combined with the results of 
table 1 indicates that the dynamics of the cables and the rigid body dynamics of the system are 
separated by a factor of 4. 

When we consider the dynamic response of the tower at low frequencies, therefore (when it is 
expected to move significantly), we can consider the cables to respond quasi-statically. There 
is one important consideration though: The clump weight is sUbject to inertia and drag forces, so 
that its response will be dynamic, i.e. there will be dynamic amplification and phase difference 
in its response, although the cables behave essentially as (nonlinear) springs. 

(a) Quasi-static Modeling 
Let us first adopt a quasi-static modeling of the mooring lines. Then the analytic solu­

tions for the statics can be used to derive the force-displacement relation. The first part of 
the cable connects the upper end of the clump weight to the tower and its configuration is that of 
a shallow sag cable so that equations (22) through (27) can be used, or, if the current can be 
neglected, the elastic catenary equations (14) through (21) provide better accuracy. The distri­

ed clump weight behaves clearly as a heavy inelastic catenary, so that equations (14) through 
) can be used by neglecting the elasticity terms. 

The third ~art of the line is the cable connecting the lower end of the clump weight to the 
anchor. Its transverse motions are small so it can be modelled essentially as an equivalent 
spring. 

This modeling neglects the inertia and drag forces on the clump weight, as well a~ the 
frictional forces between the weight and the bottom. It is used to provide a first rough estimate 
of the dynamic behavior of the tower. 

By matching the solutions for each of the three parts we obtain a relation between the ver­
tical and horizontal forces at the upper end and the horizontal displacement at the top. Figure 4 
shows a plot of the horizontal force versus horizontal displacement for a single cable (data from 
Appendix 1). Hhen several cables participate we can project all forces along the direction of 
motion and obtain an overall force-displacement relation as shown in figure 5 for 20 symmetrically 
placed cables (the graph depicts an odd function so only half of the curve is shown). 

The relation thus obtained is that of a nonlinear spring: For displacements below a critical 
value the relation is that of a weakly hardening spring; above the critical value the relation 
changes fast to a softening spring. In physical terms the clump weight allows relatively large 
restoring forces for moderate displacements, while for large displacemnts it allows large motion 
so that the tension level is kept below the breaking limit. 

It is int~resting to study the effect of such a nonlinear spring on the rigid body dynamics 
of the tower. As we have already mentioned, damping is a very serious consideration when treating 
the dynamics of nonlinear systems, so we start by considering the effect of the nonlinear damping: 
We write the equation of motion of the tower by equating the moments acting on the structure with 
the bottom as reference point. In order to make the analysis possible we write separate drag terms 
for the tower velocity and the fluid particle velocity: 
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where I i. the moment of inertia of the tower, I the added moment of inertia, C the non­
linear damping coefficient, M6 the excitation moment, F~ the horizontal cable force and Fy the 
vertical cable force. 0 is tHe distance from the bottom point to the cable attachment and ~ the 
angular motion of the tower. It ia convenient to define an equivalent drag diameter of the tower
io, and an equivalent inertia diameter d 1 

(39) 

(40) 

where di (i-I, 2, •••N) are the diameters of the N members of which the tower section con­
.ists. Then 

(41) 

(42) 

where P is the water density, 0 0 the water depth and Co the drag coefficient. Using 
figure 5 we can derive a polynomial approximation to the hor1zontal force-displacement curve in 
the form 

+ I 
3 

(Xl_X'
0 (43) 

where aI' a , I , l curve-fitting constants and x the clump-lifting displacement. The 
approximation i~ vel; g~d ~s shown in figure 5 for the spicific example considered. For the 
vertical force it is sufficient to consider 

Next we change from the angle t to the horizontal displacement x, 

x(t) - t (t) 0 

and then nondimensionalize by setting 

i.e. 

(45) 

so as to obtain 

t • t ~+Fvo!? 
1+1a 

• tw 
0 

(46) 

(47) 

(48) 

where 
C x 

C*. • ~J.+1a (49) 

f* (u) 
1 

u > 1(1+1 ) w' a 0 (50) 

while F is the nondimensional excitation moment amplitude and if 2 is the frequency of 
excitation 
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._•• Q
"'1 wo	 (51) 

By definition w is the natural frequency of the tower for small displacements around the 
~tical equilibrium. Yt is interesting to use the data provided in appendix 1 and derive a nu­
Lical value for the coefficients of (48): 

~ + 0.3566 ~ ~I+ u· F*{u) + F sin(wlT)	 (52) 

u < 1 

.~ 0f* (u) 

l 0.2289 (u-l) + (uJ-l) u > 1	 (53) 

Wo • 0.2275 rad/sec	 (54) 

The perturbation techniques are expected to provide reliable data in this case since all
 
nonlinearities have relatively small coefficients. This is indeed the case as simulations have
 
shown and it is important to note that the damping term has a relatively large coefficient: As
 
simulations have verified the ~g~u~y~e~d~t~o~w~e~r~r~e~s~p~o~n~s~e~c~a~n~b~e~c~o~n~s=i~d~e~r~e~d~t~o~b~e~h~e~a~v~i~l~y~d~a~m~p~e~d~.
 

The nondimensional form of the equation of motion is convenient in assessing the effect of 
nonlinearities, it should be noted though that, as equation (46) indicates, the form of the 
equation is correct for amplitudes of the order of x (i.p.. for u of the order of 1). For small 
amplitudes we must nondimensionalize with respect toOa smaller amplitude, in which case the value 
of C* will be significantly smaller, i.e. the small motions of a guyed tower are lightly damped. 

Figure 7 shows the relation between nondimensional amplitude {with respect to xo)and fre­
quency W for s~ll damping, as derived by using perturbation- techniques (see appendiX 3). The 
sOftenin~-hardening spring form is clearly shown while some areas are unstable (thick lines) so 
that jump phenomena can occur. For the typical drag coefficients of a guyed tower, the resulting 
damping is large so that the method of harmonic balance can be used instead, i.p.. the tower re­

,sponds only at the frequency of excitation. 

(b)	 Dynamic Modeling 
In the previous section the analysis was based on a quasi-static modeling of the cables. 

As shown in the section on cable dynamics, this is adequate for modeling the inclined upper part 
the cable for frequencies close to the natural frequency of the tower since the first cable 

.ural frequency is 4 times higher. The only part of the cable that is not adequately modelled 
by a quasi-static model is the clump weight, which is bulky and heavy so that its inertia and drag 
forces are significant. 

This means that the motions of the clump weight will introduce dynamic amplification and 
phase lag in the overall response, although the cable response can be modelled as quasi-static. 
This observation can save us significant computational effort since we do not need to model the 
distributed behavior of the cable which is known to cause numerical problems unless special care 
is taken for the fast longitudinal dynamics. 

Let us model the inclined cable connecting the clump weight to the tower as a nonlinear 
spring and the cable between the clump weight and the anchor as a linear spring. We can model the 
clUMP weight as a distributed mass subject to added mass and fluid drag forces. No waves develop 
along the clump weight so its space configuration can be approximated by a parabola for the part 
which has lifted from the bottom and a straight line lying on the bottom for the remaining part. 
Othe~ approximate techniques such as suggested in [17] could also be used. 

The simulation scheme is significantly simpler than a general model modeling the cables by 
finite difference or element techniques. Figure 8 demonstrates the dynamic amplification and 
phase lag introduced by the dynamics of the clump weight. 

By ommitting damping forces such as the friction between the clump weight and the bottom, 
oscillations may appear in a simulation scheme which in realit~ are quickly damped by those ne­
glected forces. This is a source of trouble especially if numerical models are used for the 
cables, which are very sensitive to stretching oscillations. 

CONCLUSIONS 

The purpose of this paper is to indicate some analytical techniques that can provide sig­
nificant insight in the static and dynamic behavior of moored structures and therefore assist the 
designer in selecting appropriate values for the parameters involved especially at the early
design phases. 



The guyed tower, like other compliant structures, has a low rigid-body natural frequency by 
design, while the mooring lines are under significant tension so that the natural frequencies of 
the cables are far from the frequency range where significant guyed tower motions are obtained. 
As a result, we can model the cables as nonlinear springs and concentrate on the proper simulation 
~f such components as the clump weight, whose effect on the dynamics of the tower is significant. 
A simple overall model is obtained providing flexibility for configuration changes and efficiency 
of computation for a wide parametric search. 

The dynamics of the cables are studied as sources of parasitic forces, while their struc­
tural integrity must be guaranteed against excessive dynamic tension or fatique. Some efficient 
solutions are derived for the linear dynamics of stretched cables, which agree with recent devel­
opments in cable dynamics. These solutions are particularly useful to analyze the behavior of 
multi-leg systems. 
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APPENDIX 1: Data 

To demonstrate the techniques described here, the following example has been used: 

Water depth • Do • 1,500 ft 
Tower height • • 1,600 ftDt 
Distance from fairlead to seafloor • 

• D • 1,400 ft 

Clump weight • W 200 kipsc 
Clump weight length • lc· 150 ft 
Length of unstretched cable from fairlead to clump weight c 

• L • 3,300 ft 
Total cable length (unstretched)B 

• L t • 4,600 ft 
Initial tension at the cable upper end c 

• T 300 kips 
Cable Young's modulus. E • 4.3*10' lb/ft2 

Cable diameter • d • 3.5 inch 

Tower weight • 4*10' lbs 

Tower buoyancy • 3*10' lbs 
Drag diameter c do K 55 ft 

Inertia diameter • d I • 19 ft 

Drag coefficient • CD c 0.7 
Number of cables • 20 

APPENDIX 2: Cable Dynamic Solution 

We will use equations (33) through (36) of the text to derive the linear dynamics of the 
cable. As shown in [B], the overall dynamic response consists of a part which is slowly varying 
with space (called in the sequel the slow solution) and a part which is wave-like and varies fast 

. with respect to space (fast solution). In [B], the slow part was related to the catenary effects, 
because the systems considered involved considerable sag. 

In the present case, large tensions are involved so the elasticity effects are significant 
and must be included in the slow solution. 

First, we consider all dynamic quantities as varying sinusoidally in time, i.e. 

iwtu c u e (A.ll 

iwt v v e (A.2) 

T1" Tl e iwt (A.3) 

iwt (A. 4).1" .1 e
 
- iwt
e • e e (A.5) 

We ommit all nonlinear terms and obtain a homogeneous set of equations expressed in terms
 
of ~, n instead of u, v
 

d~ iwt u .. at c iw~ e (A.6) 

dJ\ iwt 
v .. dt .. iWT} e (A.7) 

i.e. ~,J\ are the tangential and normal displacements respectively. Then: 



(A.8) 

_w 2 m ,. -WI cos~ ¢ + ~ (A.9)o 0 1 ds 

(A.IO) 

(A.ll) 

Let a d~ Ids where for shallow sag cables, a will be a small quantitiy (order E) andK 

similarly all chaRges with respect of s of the static quantities will be small. 

Let us first derive a solution which is fast varying with space, i.e. n(s), (5). Then 
~(s) must be of order E compared to n(s) so that to leading order from (A.B) 

T1 • ~{ Mw2~ + £s [To ¢J} (A.12) 

By using (A.IO) and (A.ll) to first order, we obtain from (A.12) 

~] } (A.l3) 

where M a m + a • From equation (A.9) to first order o o 

~l .. 0 + OlE) (A.14) 

so that 

2 - d [Mw n + as To ~]= 0 (A.15) 

By using the WKB method as in [B] we find 

n- rCI cos[W(s)] + sin[W(s) ~ hC2L J To/M (A.16) 

s 
W(s) = wI ds 

(A.l?) 

By using (A.ll) to first order, we find 

o 

] .f To/Mt [CI sin[W(s)] C2 cos[W(s)] w a (A.lS) 

Next, we derive a solution which is slowly varying with respect to 5, withn and t of the 
same order. We note that 

dE;
CIS'" OfF. (A.19) 

so that from (A.8) 

2T I '" - -
I 

Mw 
~ 
n + o(e 2 ) (A.20)

a
 

By combining (A.20) and (A.ll) we find to first order
 

-T .. -Mw 2 AE dr 
I a 2AE-Mw2 CIS (A.21) 

By combining (A. 21) and (A.9) we find to first order 

- ~ AE d [ 1 de]~ = m ds a 2 AE-Mw 2 as (A.22) 
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For a shallow catenary such as the one considered here, sUbject to a surface current, the 
value of 11 is constant to first order as easily seen from equations (5) and (6) of the text: If 
T »W.L (in order to have a shallow catenary) 

(A.23) 

where T is the tension at the top and ~o the angle between the line connecting the cable 
ends and the h8rizontal. Let 

m 
M (A.24) 

so that (A.22) becomes 

- 1t· ­p2 (A.25) 

or 

(A.26) 

and	 by using (A. 11) and (A.2l) 

PS -ps a m 
n • (C3 e - e ) p KC4 (A.27) 

In order to find the natural frequencies we add the slow and fast solutions, i.e. 

Ps Ps (A. 28)t(s) • W:O~S)!M l1[C sin!w(s}] - C COS!W(S)~ + C3 e + C e­l 2	 4 

and apply the boundary conditions 

t (0) • t (L) • 0 (A.30) 

nCO) • neLl • 0 (A.3l) 

The resulting equation is: 

sinh(PL) sin (Wo ) [1 - P2X:~2 ]+ 
+ [COSh (Pl.) cos (W ) -11~ {!.- + 

o ] P k l ~J" 0
2 

where 

L w ds 

Wo .. ~ jT(S)!M (A.33) 

w	 w 

(A.34) 

Note that if we consider a horizontal catenary, then xl·· k k. If the elasticity EA~~ 

/T(o)/M	 ~T(L)/M 

2then P+l1 and equation (A.32) becomes to first order in 11 : 

xL { xL kL}tan ~. tan(~) - ~ = 0 (A.35) 

which provides the symmetric and antisymmetric natural frequencies of a shallow sag chain 
(9]. 

If we let a-+O then: 



w
P "i lE'T'P - ill 

and equation (1..32) becomes: 

sin(kL). Bin (IlL)- 0 (A.36) 

which provides the natural frequencies (transverse and longitudinal) of a taut wire. 

APPENDIX 3: Weakly Nonlinear Dynamics 

Equations (48) and (50) of the text describe the dynamics of the guyed tower when the moor­
ing system is modelled quasi-statically. Since the coefficients of the nonlinear terms are small 
relative to 1 (order £) we can use the method of multiple scales to derive the response up to first 
order (101. Essentially the technique is based on the remark that the nonlinearity changes the 
amplitude of the response, but also the period (or equivalently the phase). As a result, both the 
amplitude and the phase are medified by expanding the amplitude in a power series in c and by using 
two time scales t and £t. 

In the case of wl~l (i.e. ~ ~ w ) we expect resonance, i.e. a single frequency response 
which is excited by relatively small f8rcing amplitude (order E). To first order the method of 
multiple scale predicts 

(B.l) 

where a and yare slowly varying functions of time. By using the next order equation de- . 
rived from (48) we find a set of equations that a and y must satisfy, otherwise they produce 
secular terms [101. 

da F 
~t .. - ~(a) a - ~ cosy (B.2)
Q~ \.L+w )l 

dY F 
~t .. we (a) - + sin y (B.3)
Q~ 

wl a (l+w )
l 

where (16): 

1 211 
o (a) .. J f·(a,~) sin~ d~ (B.4)

~ o 

2w (a) = I - -!. fTr f· (a,~) cos~ d~ (B.5)
e Tra 0 

In the case of a steady state response a=O,y .. 0 so equations (B.2) and (B.3) provide 

WI .. Jw~(a) :/ (~r- + \~.a't4 (0 (a) 

By using equation (B.6) we can draw the curve relating the amplitude and the frequency of 
excitation WI' Note that in order for (B.6) to provide real WI the radical must be positive so 
the maximum ·amplitude, is the solution of the equation 

i.e. strongly dependent on the damping coefficient C· as expected. 

When the frequency of excitation w is far from 1 the system is responding with a signifi­
cant amplitude only if the excitation is large (order 1). The response consists of a term of 
frequency WI and a term of frequency W =1 (natural frequency of the system) which may not decay 
depending on the relation between wl aRd W (possibility of subharMOnics and superharmonics).o 
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TABLE 1
 

First Natural Frequencies of the Cable in (rad/sec)
 

Symmetric Modes 

1.18loll • 

101 • 1. 592 

101 • 2.273 

Antil>ymmetric Modes 

loll . 0.89 

101 • 1.802 

101 3 K 2.70 

Figure 1: Guyed Tower Figure 2: Forces on a cable element 
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