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ABSTRACT

Composite systems consisting of sheet reinforcement and polymeric or metallic
matrix which can undergo plastic deformation present unique and unexplored issues
with respect to the mechanics of their deformation, especially in the presence of cracks.
For example, microlaminates consisting of layers of metal sheet reinforced with sheets
of nonmetallic composite material are a family of new structural composite material
systeins.

In this class of composites, which consist of very strong and stiff sheets in a plastic
matrix, the elastic and plastic distributions of stress and strain around a crack can
be dctermined by assuming that the transverse displacements around the crack are
negligible, by analogy from the corresponding case for longitudinal shear.

An infinite yield strength in the reinforcing sheets then gives a corresponding plas-
tic zonc and on a microscopic scale, the plastic flow within the matrix between the
last cracked and the first uncracked reinforcing sheet is discussed and used to deter-
mine the stress concentration in the uncracked sheet. Other issues associated with the
quantitative understanding of crack growth are discussed.

INTRODUCTION

Microlaminates consisting of layers of metal sheet reinforced with shects of non-
metallic composite material are a family of new structural composite material systems.
An example is the aramid aluminum laminates which consist of layers of thin aluminum
alloy sheet bonded by adhesive impregnated with high strength unidirectional Aramid
fbers.

The issues addressed in the present paper pertain to any material system with sheet
reinforcement and plastically deforming matrix (metal or polymetric) and are therefore
not restricted to the particular aramid/aluminum system. In general, the toughness of
high strength materials can be enhanced in at least three ways. First, introducing free
surfaces normal to the crack direction allows geometrical readjustments and transfer of
the load to neighboring elements. The free surfaces may be manufactured, as in a fibrous
structure, or may be developed during fracture, as with secondary cracks that blunt the
main crack. Second, the toughness is enhanced by a certain amount of viscosity, so
that cracks become blunt under low loads and can theri withstand greater occasional
overloads than if they had remained sharp. A third method of toughening is by using
a matrix that deforins plastically, so that its vield strength will limit the stress applied
to the high strength elements. Such plastic yvielding not only occurs in nietallic crystals
but is also an approximation to the non-linear viscoelastic flow of polymers subjected
to elastic strains of more than a few percent.

Consider a composite with elastic reinforcing clements in sheet form and a plastic
matnx. Since the reinforcing elements are in sheet form, plane strain may be assumed.
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In thin work, we seck the microscopic distribution of stress and strain at the tip of o
erack nounal to the reinforcing sheet.

ANALYSIS
The Classical Apisotropic Elasticity of a Sheet-Reinforced Composite. The

configuration under study, shown in Fig. 1, consists of relatively stiff and strong rcin-
forcing sheets of thickness t,, bonded in a relatively compliant, plastically deforming
matrix of thickness t,. The question of concern is the stress distribution in the unbro-
ken platelet next to the tip of a erack. Intuitively one expects the reinforcing sheets to
slide over each other with the plastically deforming material acting as a kind of solid
lubricant. If the sheets are stiff enough, almost all the deformation will be in the vertical
direction. If so, the analysis is much simplified by the analogy with longitudinal shear
(Mode 111) [1]. We thercfore first consider the anisotropic elasticity of the material to
sce the extent to which the displacement can be assumed unidirectional.

In regions of moderate stress and strain gradients, cach layer is subjected to the
same strain ¢;; in the z, direction and the same stress ¢;; in the z, direction, as well
as being under plane strain so that €33 = 0. When these conditions are imposed on
the three-dimensional stress-strain relations for each layer, regarded as isotropic with
a common Poissson’s ratio v and moduli of elasticity E, and E, for the matnx and
reinforcing layers, respectively, an averaging process gives

v(1+v)(tm +t,) P (1- yz)(tm +1t,)
Emtm + E t, B Entm + Evt,

‘ (1

€22 = —0),

m:a”[(zm +i) (=20 +v) v+ v)(tm +tr) ]-

Em E J(tm+t,)1—v) (1=t)(tmEm+t.E,)
14 tm +1, t, t,
—022% , T2 =032 (G +G—) [(tm + t,) . (2)
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Figure 1. Crack in a laminated composite with ductile matrix.



25

As an example, consider the following properties: E,/Em = 10, v, = v, = 0.3,
tm/(tm + t,) = 0.7. In terms of the modulus of elasticity of the reinforcing sheet,
Bql. (1,2) siVCZ E,-C” = (6~93)0” - (1.054)021, E.Jzz = —(1.054)(7” o (2.46)021,
E,~,; = (18.98)0,3. Note that the transverse strain ¢;, due to a longitudinal stress 03,
is indeed small. This means that the effect of transverse strains on the longitudinal stress
is also small and suggests that the assumption of an analysis based on displacements in
the z; direction could be appropnate.

Anisotropic Elsastic Stress and Strain Distributions around a Crack Tip. The
stress and strain fields around the tip of a crack in an anisotropic medium under plane
strain conditions for cracks at arbitrary angles to the axes of anisotropy have been
presented in Refs 2 and 3. In our case the stress-strain relation reduce to

€1 =anoy +a12922, €22 = 12011 +a22022, Y12 = Q66012 - (3)

The crack tip stress distributions are given in terms of the roots yu; of an equation
formed from the compliance coefficients of Eq. (3):

anp* + (2012 + ags)p’ +az =0 (4)
Solving for u,,
2a), + a a
2 2 12 1 Q6 22
JHq X — , - . S
Hyy K2 g P ()

Note that the coefficients of compliance a;; in comparison to their magnitude, indicate
that the values of u will be imaginary, and that y, is large compared with u,. Neglecting
p» with respect to u;, the equations given in Ref 2 for the stress distribution in terms
of a stress intensity factor k, (defined below) are:

o L R /o = B e e (6a)
\/2—’- \/C059+i\/065/0“5iﬂ9 \/5 \/I,+i12‘/a“/a“

k
—LRe : , (6b)

027 =
V2  iza o o
Jl‘] T I3 072/066

iRe i\/an/aes _ i\/027/066 (6c)
v2 \/11 +1z2v/ass/a1, \/1,+i:r7,/an/a“

The stress intensity factor k, differs from one frequently used in that the factor =
dizappears from a number of equations. In particular, for a crack of half length, c, in a
body subjected to a tensile stress 0,

g2 =~

1/2

ky = oxvc=Ki/J7. (7)
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The corresponding equations for longitudinal shear (Mode I1I) in an isotropic 1naterial

arc
ks,

_ i _ k) 1
ouy = _ﬁm [m] y Ony = ﬁm [——(z,, T i.r,.)'/"’] ; (8)

To complete the analogy, tum to the cquations for displacement. For planc strain
with large vulues of 1y, the cquations given in Ref 2 become

u; = k;v2 Re [dn(l: + u2z2)'? — fanan(z) + /-4112)”2] , {9a)
uz = k;v/2 Re [—i\/ana“(z, + #212)1/2] 3 (90)

For Mode Il dcformation in anisotropic material
sy = Be3 B [-.‘(1/0)(:,, 4 iz;,)'“] . (10)

Comparison of Egs. (9b) and (10) along with (6b,c) and (8) gives the following analogy
between variables in isotropic longitudinal shear and anisotropic plane strain tension:

uy = uz 3 G — 1/\/anase ; 13 — z27/az/aes , (11)
Ty — Iy i 0y = 012V 866/a22 3 Onz — 022 5 k3 = 023/ = k) = 020 /e . (12)

Yielding at the Crack Tip. For predicting fracture we need the stress in front of the
crack. Applying the procedure by Rice [4, 5] to the present problem, we find that well
away from the plastic zone, the solution approaches the elastic stress distribution:

—ksinr/2 agg cos0//2
=k /_ 13
1 V2r1 ’ e a2 /2r/ ! (13)

where
Vz} + 13021 /aee
67 = tan~! N j M T1 ¥ Tg022/ 066 )
an (I2 022/066/11) ’ g (k; /%) (az2/ass )
Close to. but ahead of the crack tip (| / |« and z; > 0 ), the solution becomes

g2 or 022 2 /066 x?
_ - —_= - —lﬂ—- N 1
k 1»'/2 ! k x\ az2 4r/ ( 4)

Fully Plastic Flow within a Laver of Matrix. The stress and strain distribution
within the matrix layer at the tip of the crack are needed to predict whether or not the
layer will delaminate and thus blunt the crack. The displacements of the reinforcing
sheets at the crack tip set boundary conditions on the stress and strain distribution in
the matrix layer. Further boundary conditions are set by the transverse tension o,
which tends to suck matrix material away from the crack tip, increasing the thickness
of the laminar laver. This increased thickness will in turn decrease o0,,. So far, no
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sueh analysis is available. Therefore we neglect this thickening action and inquire whnt
tansverse stress developa from two nonunigue, fully plastic flow fields,

The simplest flow field consists of pure sliding along one interface, as shown in
Fig. 2a. The slip line ficdd shown by the daslicd lines denmonstrates that plustic flow
need not spread out from the comer if the rest of the matrix remains rigid. The stress
distribntion is indeterminate, except for a yicld strength in shear k along the active
mmterface. Any strain-hardening would tend to thicken the zone of plastic flow; so we
serk a field with flow more widely distributed through the matrix layer.

A ficld with plastic flow in the matrix is shown in Fig. 2b. It was denived assuming
geometrical similanity as the crack opens. A gradually thickening layer of the matrix is
drawn upwards at half the displacement rate of the cracked reinforcing sheet.

n3/2
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7

aj Stationary matrix b) Sliding matrix
Figure 2. Plastic flow in matrix.
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