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ABSTRACT 
Composite systems consisting of sheet reinforcement and polymeric or metallic 

matrix which can undergo plastic dcfonnation present unique and unexplored issues 
with respect to the mechanics of their dcfonnation, especially in the presence of crll.Cks. 
For example, microlaminates consisting of layers of metal sheet reinforced with shccts 
of nonmetallic composite material are a family of new structural composite material 
systelfis. 

In this class of composites, which consist of very strong and stiff shccts in a plastic 
matrix, the elastic and plastic distributions of stress and strain around a crack can 
be determined by assuming that the transverse displacements around the crack are 
negligible, by analogy from the corresponding case for longitudinal shear. 

An infinite yield strength in the reinforcing sheets then gives a corresponding plas
tic zone and on a microscopic scale, the plastic flow within the matrix between the 
last cracked and the first uncracked reinforcing sheet is discussed and used to cicter
mine the stress concentration in the uncracked sheet. Other issues associated with the 
quantitative understanding of crack growth are discussed. 

INTRODUCTION 
~Iicrolaminates consisting of layers of metal sheet reinforced with sheets of non

metallic composite material are a family of new structural composite material systems. 
An example is the ararnid aluminum laminates which consist of layers of thin aluminum 
alloy sheet bonded by adhesive impregnated with high strength unidirectional Aranlid 
fibers. 

The issues addressed in the present paper pertain to any material system with shcct 
reinforcement and plastically defonning matrix (metal or polymetric) and are therefore 
not restricted to the particular aramid/aluminum system. In general, the toughness of 
high strength materials can be enhanced in at least three ways. First, introducing free 
surfaces normal to the crack direction allows geometrical readjustments and transfer of 
the load to neighboring elements. The free surfaces may be manufactured, as in a fibrous 
structure, or may be developed during fracture. I\S with second~' cracks that blunt the 
:Uaill crack. Second. the toughness is enhanced by a certain amount of viscosity, so 
that cracks becom{' blunt under low loads and can th{'n withstand greater occasiollal 
uwrluads than if t hey had remailled sharp. A t bird method of toughening is by using 
a matrix that deforms plastically, so that its yidd str{'ngth wllllimit the str{'ss applied 
I,) th,' high ~tlCllgth el{'ments. Such pla.~tic yiddillg Ilot only occurs in metallic cI)'stnls 
bllt i~ a]"o all approximat ion to thl" non-lill(,,1\T \'isco<'instic flo..... of polymers subjectl"d 
I,> l'la~t i. "I millS of morl" thall a ff."w percf."lIt. 

('oll"i.ll'r a .ompo"ite with t·In.~tic rl'illfnrcillg dem'lIt" ill "hl'('t form nnd a pln~tic 

:n:llrix. Silln' tl", rl'illf()rcill~ t'll'l1lelll" l\ft' ill sllt",t fonll, plllllt" straill I1Iny bl' n.-;SUIIII'd. 
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III tbiH work, we ~k tlae micrOllCOpic distribution of .treu and .trwll lit tile til' of II 

nark 1101111/11 to tla,. r..illforrill" 1II.r.d. 

ANALYSIS 
The Classical Anl'otropic EI!stlcjty 2.f A Sheet-Reinforced Composite. TIa,. 
r.lII.fi~uration under .tudy, shown in Fi~. 1, corui.u of relativdy Itiff and Itrollg rein· 
forrin~ Iheets of thickncss 'r. bonded in a relatively compliant. plastically deforming 
matrix of thicknCSll ' .... The qucstion of concern is the Itrellll distribution in the unblO
kl~n platelet next to the tip of a crack. Intuitively one expects the reinforcing shc."cts to 
slide over el\ch other with the plaatically deforming materill..1 acting as a kind of solid 
lubricant. If the shccts are stiff enough. almost all the deformation will be in the vertical 
direction. If so, the analysi!l is much simplified by the analogy with longitudinal shear 
(Mode III) [11. We therefore first consider the anisotropic elasticity of the materiR! to 
sec the extent to which the displacc~t can be assumed unidirectional. 

In regions of moderate stress and strain gradients. ea.ch layer is subjected to the 
same strain (22 in the Xl direction and the same stress (711 in the XI direction, as well 
a<; being under plane strain so that (33 = O. \Vhen these conditions are imposed on 
the three-dimensional stress-strain relations for each layer, regarded as isotropic with 
a common Poissson's ratio II and moduli of elasticity Em and E r for the matrix iUl(l 
reinforcing layers, respectively. an averaging process gives 

( 1) 

tm tr) (1-211)(1+11) II(I+II)(tm+tr)] 
(11 = all - + - + [( Em Er (tm + t r )(l - II) (1 -1I)(tmEm + trEr ) 

11(1 + 1I)(tm + ir) (tn! t r ) 
-an E t E t ' -112 = 17 12 -c + -c j(t m + t r ) . (2) 

,"",,+rr rT1 r 
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Fiplre 1. Crack ill a la.minated compo~itl' with ductile matri:x. 
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A. an ~xample, ronlider the following propertiee: E,IE... ... 10. v, - v... == 0.3, 
t ... /(t ... + t r } = 0.7. In lcrmlI of the modulul of e!ulicity of the rt'inforcing sheet, 
Eqe. (1.2) give: £,(JI = (6.93}O'JI - (I.054}0'22. E,(22 = -(l.054}O'JI + (2.46}0'11. 
£,"112 = (IS.9S}O'n· No~ that the tranlv~ Itrain tJl du~ to a longitudinal slreu 0'11 
i. indeed .mall. Thill means that the effect of tranlV~strains on the longitudinalltresa 
ill alllO small and suggCllts that the asaumption of an analyli. based on displacements in 
the %2 direction could be appropriate. 

Anisotropic Elastic Stress and Strain Distrihutions around ~ Crack Tip. The 
stress and strain fields around thc tip of a craclc in an anisotropic medium under planc 
strain condition~ for cracks at arbitrary arJglcs to the axes of anisotropy have been 
prcsentcd in Rcfs 2 and 3. In our case the stress-strain relation reducc to 

Thc crack tip stress distrihutions arc givcn in tcrms of the roots Ili of an equation 
formed from the compliancc coefficients of Eq. (3): 

(4) 

Solving for Ili, 

(5) 

;'\otc that the coefficients of compliance ajj in comparison to their magnitude, indicate 
that the values of Il will be imaginary, and that III is large compared "'ith 1l2' Neglecting 
/12 with respect to Ill, the equations given in Ref 2 for the stress distribution in terms 
of a stress intensity factor k l (defined below) are: 

(6a) 

1..'1 [ I ] 

J2 VXI -i- iX2 ja11/a66 
0'11 ~ -Re	 (6b) 

k l R [ i j an/a66 i j an /a66 ]0'12 ~	 - I' - . (6c) 
J2 VII + iX2ja66/all VII + iI2jan/a66 

Th" str~" intensity factor k. differs from one frequently used in that the factor ,,1/2 

Ji"appenr:-; from a numbt"r of equations. In particular. for a crack of half length. c. in a 
body subjected to a tcnsile strt"5s 0'00. 

(7) 
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Th~ corre-pondin~ equation. (or longitudillnl .hear (Mode III) in an ilIOtropic matrrilll 
arc 

k;), ( 1:" ( 1 ]i](11';)' = --Rc (17';)' = -Rc . (8)J2 (xlI +iz7,)I/7' ./2 (ZII+ ix7,)I" 

To complete the analogy, turn t.o the Cf!uationtl (or displacement. For plane strain 
with large Vb.lUe8 o( Ill, th~ equations given in Rc:f 2 become 

UI = 1:1 J2 Rc [a12(%1 + p,z,d" - ",alla,,(zl +PIZ,)I/'] • (ga) 

u, ::= kl ./2 Rc [-i,ja77Iloo (zl + P7Z,)1/'] (9b) 

For Mode III deformation in anisotropic material 

Comparison of Eqs. (9b) and (10) along with (6b,c) and (8) gives the follo\\,'ing analogy 
between variables in isotropic longitudinal shear and anisotropic plane strain tensioll: 

Yielding 3t the Crack Tip. For predicting fracture we need the stress in front of the 
crack, Applying the procedure by Rice [4, 5] to the present problem, we find that well 
away from the plastic ZODe, the solution approaches the elastic stress distribution: 

-ksinO l /2 _ k f!!;66 cos 01/2
0'11 = 0'21 - - (13) 

$I a22 $I 

where 

Close to. but ahead of the crack tip (I zl I¢: and II > a ), the solution b~omes 

(14) 

Full'\" PI;tstic Flow within a L;tver of Matrix. The stress and strain distribution 
within the matrix layer at the tip of the crack are needed to predict whether or not the 
lllyer will ddaminate and thus blunt the crack. The displacements of the reinforcing 
:;heet:; at the crack tip set boundary conditions on the stress and strain distribution in 
the matrix layer. Further boundary conditions are set by the trl\ns\'erse tension 0') I, 

which tend:; to suck matrix 1lIl1teriaJ aWIIY from the crack tip, increasing the thickness 
of t h.. laminar layer. This incrt"a.."C'd thickness will ill turn dt"Crel\Se 0'11. So flU'. no 
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"".·1. :.,,:.Iysis i" lI\'Jlih.I.I~. TIl4'"f"rforr. wr IIrll;ll'Ct thill thickrllin/{ ~ti(m IIl1d in'l'lifl' wlilit 

II """V"I"'" "tro'"" 'kvrlo)'11 fn'lII two 1I011lIlli~u~. flllly ""..."tic flow firld:!. 
1'1... "illll'l""t fluw fidd cOl/IIi"lI of pme IIlidilljl; ilion/{ Ollr. interfacc, a." "how" ill 

FiJ.;. 2;•. Tlu~ I<lip lillr. fidd "howlI hy the dulled lilies dclllOlll<trll.tcs tllllt plwttic flow 
JII""I 1I0t "preatl oul from OIC comcr if the reat of thc matrix remainll ri,;id. The IItrCall 
distribution ill ind('~nninatc, r.xcept for II yield IItrellgth in IIhNU' k alon,; the JU:tivc 
i"l<~rfacr.. Any IItrain·hllfdenin~ would tcnd to thickcn the zonc of pll1Stic flow; !IO wc 
,...",k it. fidel with flow more widely dilltrilmted through the lIIatrix laycr. 

A field with I'llLStic flow in thc matrix i, ,hown ill Fig. 2b. It was dcrived 8S11uminp; 
J;,,,,mrtrical similarity as t~ crack opens. A gradually thickeninp; layer of the matrix is 
drawn upwards at half the displacement ratc of thc cracked rcinforcing sheet. 

!,~/2 

I,

~ 
ai Stationary matrix b) Sliding matrix
 

figure 2. Plastic flow in matrix.
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